Квантовая биология
Физикам уже более ста лет известно о квантовых эффектах, например, способности квантов исчезать в одном месте и появляться в другом, или же находиться в двух местах одновременно. Однако поразительные свойства квантовой механики применимы не только в физике, но и в биологии.
Лучший пример квантовой биологии — фотосинтез: растения и некоторые бактерии используют энергию солнечного света, чтобы построить нужные им молекулы. Оказывается, фотосинтез на самом деле опирается на поразительное явление — маленькие массы энергии «изучают» все возможные пути для самоприменения, а затем «выбирают» самый эффективный. Возможно, навигация птиц, мутации ДНК и даже наше обоняние так или иначе опираются на квантовые эффекты. Хотя эта область науки пока весьма умозрительна и спорна, учёные считают, что однажды почерпнутые из квантовой биологии идеи могут привести к созданию новых лекарств и биомиметических систем (биомиметрика — ещё одна новая научная область, где биологические системы и структуры используются для создания новых материалов и устройств).
Ломоносов Михаил Васильевич
Русские ученые химики не смогли бы работать в условиях отсутствия работ Ломоносова. Михаил Васильевич был родом из деревни Мишанинская (Санкт-Петербург). Родился будущий ученый в ноябре 1711 года. Ломоносов — химик-основатель, давший химии верное определение, ученый-естествоиспытатель с большой буквы, мировой физик и знаменитый энциклопедист.
Научные работы Михаила Васильевича Ломоносова в середине 17-го века были близки к современной программе химико-физических исследований. Ученый вывел теорию молекулярно-кинетического тепла, которая во многом превосходила тогдашние представления о структуре материи. Ломоносов сформулировал много фундаментальных законов, среди которых был закон о термодинамике. Ученый основал науку о стекле. Михаил Васильевич первым открыл тот факт, что у планеты Венеры есть атмосфера. Он стал профессором химии в 1745 году, через три года, после того как получил аналоничное звание в физической науке.
Н.Н.Зинин — первый Президент Русского химического общества
(Из книги «История химии в России. Краткие очерки»)
Академик Н.Н. Зинин принадлежит к числу крупнейших русских химиков XIX в. Он
решающим образом способствовал становлению и развитию органической химии в
России, являлся признанным мастером в области органического синтеза. Он был одним
из организаторов Русского химического общества и первым его Президентом с 1868
по 1877 год.
Николай Николаевич Зинин родился 25 августа 1812 года в Шуше, Нагорный Карабах.
Лишившись родителей в раннем детстве, получил воспитание в семье дяди в
Саратове. В 1833 г. окончил математическое отделение философского факультета
Казанского университета. Обладал большими способностями к математике и,
возможно, в дальнейшем посвятил бы ей свою жизнь. Однако обстоятельства
сложились так, что Зинин стал преподавать химию и увлекся этой наукой. В
1837-1840 гг. Зинин был направлен в заграничную командировку. Около года он
работал в лаборатории знаменитого немецкого химика Ю. Либиха, который оказал
большое влияние на выбор направления исследований молодого ученого. В 1841 г.
возвратился в Казань и осуществил ряд пионерских работ в области органического
синтеза. Зинин явился основателем знаменитой Казанской школы химиков, ставшей
одним из основных центров химических исследований в России XIX в. В 1848г. он
переехал в Петербург, где на протяжении многих лет работал в
Медико-хирургической академии. Петербургский период деятельности Зинина также
оказался весьма плодотворным. В 1865 г. Н.Н. Зинин был избран академиком
Петербургской Академии наук.
Основные
научные достижения
1841
год — Разработал метод получения бензоина из бензальдегида и бензила,
фактически впервые осуществив реакцию бензоиновой конденсации; впоследствии эта
реакция стала одним из универсальных методов получения ароматических кетонов.
1842
— Открыл реакцию восстановления ароматических нитросоединений в ароматические
амины действием сульфида аммония, получил анилин из нитробензола
Эта реакция
оказалась чрезвычайно важной в практическом отношении. Синтез анилина сделал
возможным его производство в больших масштабах, что послужило основой для
создания анилино-красочной промышленности
На заседании Немецкого химического
общества, посвящен ном памяти Н.Н. Зимина (8 марта 1880 г.), выдающийся
химик-органик А. Гофман говорил: «Если бы Зинин не сделал бы ничего более,
кроме превращения нитробензола в анилин, то и тогда его имя осталось бы
записанным золотыми буквами в истории химии… Никто бы не мог представить себе
и во сне, что новому методу амидирования суждено будет послужить основой
могучей заводской промышленности, которая в свою очередь даст совершенно
неожиданный и плодотворный толчок науке… Наш бывший товарищ по науке сделал
открытие, которое выпадает на долю немногим счастливцам». Посредством указанной
реакции Зинин приготовил также a-нафтиламин, м-фенилендиамин и бензидин.
1845
— Открыл так называемую бензидиновую перегруппировку, впервые наблюдал
превращение азосоединений в гидразосоединения.
1852
— Получил «летучее горчичное масло» — аллиловый эфир изотиоциановой кислоты.
1854
— Получил ацильные производные мочевины — уреиды, синтезировал аллиловый спирт.
1860-е
— Получил дихлор- и тетрахлорбензол, толан и стильбен.
1871
— Разработал метод замещения галогенов в органических соединениях водородом (в
присутствии цинка в спиртовых растворах).
Н.Н.
Зинин пользовался огромным авторитетом у своих коллег-соотечественников; его
работы были широко известны за рубежом.
В
Казани и Петербурге Зинин подготовил целую плеяду талантливых
химиков-органиков, которые совершили много важнейших открытий. Он был превосходным
лектором. А.М. Бутлеров говорил о нем: «..
всякий, слышавший его как
профессора или как ученого …знает, каким замечательным лектором был Зинин:
его живая, образная речь всегда ярко рисовала в воображении слушателей все им
излагаемое; высокий, как бы слегка крикливый тон, чрезвычайно отчетливая
дикция, удивительное умение показать рельефно важные стороны предмета — все это
увлекало слушателей, постоянно будило и напрягало их внимание»
Н.Н.
Зимин скончался в Петербурге 18 февраля 1880 г.
Комментарии
Никола Тесла
физик, инженер, великий изобретатель
Альберт Эйнштейн
автор теории относительности, физик-теоретик
Галилео Галилей
великий ученый Возрождения, философ, математик, астроном, изобретатель
Яценко, Леонид Петрович
член-корреспондент Академии наук Украины, директор Института физики АН Украины
Войцех Ястшембовский
польский учёный-естествоиспытатель, изобретатель
Карл Гуте Янский
американский физик и радиоинженер, основоположник радиоастрономии
Янг Чжэньнин
китайский и американский физик
Лола Григорьевна Яковлева
российская, ранее советская, шахматистка, международный мастер ИКЧФ среди женщин
Нейропаразитология
Euhaplorchis californiensis
Если вы знаете о токсоплазмах, в основном живущих в представителях семейства кошачьих, но способных обитать и в других теплокровных, в том числе в людях и крысах, то вы знаете и о нейропаразитологии. Тот факт, что у этих жутких паразитов есть теперь своя собственная научная дисциплина, показывает, насколько они распространены в природе.
Микропаразиты обычно изменяют поведение носителя в соответствии с нуждами своей репродуктивной стратегии. Часто в процессе участвует и третья сторона. Например, Euhaplorchis californiensis заставляет рыб выпрыгивать из воды, чтобы болотные птицы могли поймать их и съесть. Волосяные черви живут внутри кузнечиков, и когда настаёт время покинуть своих носителей, они выпускают в кровь насекомых целый коктейль из химических веществ, вынуждающий кузнечиков покончить жизнь самоубийством, прыгнув в воду. А волосяные черви спокойно уплывают от мёртвых «хозяев».
Рекомбинантная меметика
Эта область науки только зарождается, однако уже сейчас ясно, что это только вопрос времени — рано или поздно учёные получат лучшее понимание всей человеческой ноосферы (совокупности всей известной людям информации) и того, как распространение информации влияет на практически все аспекты человеческой жизни.
Подобно рекомбинантной ДНК, где различные генетические последовательности собираются вместе, чтобы создать нечто новое, рекомбинантная меметика изучает, каким образом мемы — идеи, передающиеся от человека к человеку — могут быть скорректированы и объединены с другими мемами и мемеплексами — устоявшимися комплексами взаимосвязанных мемов. Это может оказаться полезным в «социально-терапевтических» целях, например, борьбы с распространением радикальных и экстремистских идеологий.
Марковников Владимир Васильевич
В список “русские химики” без сомнений входит еще один известный ученый. Владимир Васильевич Марковников, уроженец Нижегородской губернии, появился на свет 25 декабря 1837 года. Ученый-химик в области органических соединений и автор теории строения нефти и химического строения материи в общем. Его труды сыграли важную роль в развитии науки. Марковников заложил принципы органической химии. Он проводил много исследований на молекулярном уровне, устанавливая определенные закономерности. Впоследствии эти правила получили названия в честь их автора.
В конце 60-х годов 18-го века Владимир Васильевич защитил диссертацию о взаимном воздействии атомов в химических соединениях. Вскоре после этого ученый синтезировал все изомеры глутаровой кислоты, а потом — циклобутандикарбоновой кислоты. Марковников открыл нафтены (класс органических соединений) в 1883 году.
За свои открытия был награжден золотой медалью в Париже.
Экзометеорология
Юпитер
Наряду с экзоокеанографами и экзогеологами, экзометеорологи заинтересованы в изучении природных процессов, происходящих на других планетах. Теперь, когда благодаря мощным телескопам стало возможно изучать внутренние процессы на близлежащих планетах и спутниках, экзометеорологи могут следить за их атмосферными и погодными условиями. Юпитер и Сатурн со своими невероятными масштабами погодных явлений — первые кандидаты для исследований, так же как и Марс с регулярными пылевыми бурями.
Экзометеорологи изучают даже планеты за пределами нашей Солнечной системы. И что интересно, именно они могут в итоге найти признаки внеземной жизни на экзопланетах путём обнаружения в атмосфере органических следов или повышенного уровня углекислого газа — признака индустриальной цивилизации.
Зинин Николай Николаевич
Зинин Николай Николаевич — известный русский химик, академик Петербургской Академии наук (1858), первый президент Русского физико-химического общества (1868-77). Родился в Шуше (Нагорный Карабах). Окончив Казанский университет в 1833 г. он был оставлен в нем преподавать математику и физику. С 1835 г. Зинин начал читать и курс теоретической химии. В том же году он блестяще сдал экзамен на степень магистра физико-математических наук. В 1836 году Зинин защитил диссертацию и получил ученую степень магистра физико-математических наук. В 1837 г. он был назначен адъюнктом по кафедре химии и послан за границу. Вернувшись в Казань, Зинин защитил докторскую диссертацию «О соединениях бензоила и об открытых новых телах, относящихся к бензоиловому ряду». Он впервые получил бензоин конденсацией бензальдегида в присутствии цианистого калия и бензил (дифенилдикетон) — окислением бензоина азотной кислотой. В своей диссертации Зинин близко подошел к современным представлениям о катализе.
Одним из важнейших направлений исследований Зинина было изучение реакций окисления и восстановления органических молекул. Восстанавливая нитробензол сероводородом ему удалось синтезировать анилин (1842). Теперь анилин можно было получать в промышленном масштабе. В 1844 году пользуясь восстановительным действием сульфида аммония на динитросоединения, Зинин получил нафтилендиамин и фенилендиамин. Таким образом был открыт общий метод получения аминопроизводных из органических нитросоединений. В 1847 г. назначен профессором химии в медико-хирургической академии, в которой 12 лет исполнял должность ученого секретаря и которой два раза временно управлял.
В 1848 году он получил приглашение перейти на службу в Санкт-Петербург, чтобы возглавить кафедру химии в Медико-хирургической академии. Здесь он проработал в звании ординарного профессора с 1848 по 1859, в звании академика с 1856, затем заслуженного профессора с 1859 по 1864, и, наконец, в звании «директора химических работ» с 1864 по 1874 гг.
Зинин был ординарным академиком Императорской Академии Наук. При основании (в 1868 г.) русского химического общества Зинин избран его президентом и в этом звании состоял 10 лет.
Впервые синтезировал (1841 г.) бензиловую (дифенилгликолевую) кислоту, описал ее свойства и установил состав. Открыл (1842 г.) реакцию восстановления ароматических нитросоединений, послужившую основой новой отрасли химической промышленности — анилокрасочной. Таким же путем получил анилин и aльфа-нафтиламин (1842 г.), м-фенилендиамин и дезоксибензоин (1844 г.), бензидин (1845 г.). Им была открыта (1845 г.) перегруппировка гидразобензола под действием кислот — «бензидиновую перегруппировку». Показал, что амины — основания, способные образовывать соли с различными кислотами. Получил (1852 г.) аллиловый эфир изотиоциановой кислоты — «летучее горчичное масло» — на основе иодаллила и тиоцианата калия.
ЗининымУстановлено, что при взаимодействии этого масла с анилином образуется аллилфенилтиомочевина. Зинин разработал самый прогрессивный метод синтеза нитроглицерина из глицерина с использованием концентрированной азотной кислоты, низкой температуры и т. д. Он предложил начинять нитроглицерином гранаты (1854), разработал способ получения больших количеств нитроглицерина и способ его взрывания. Однако его предложения не были реализованы артиллерийским ведомством. Только в 1863-67 нитроглицерин начали успешно применять для подземных и подводных взрывов. Изучал (1854 г.) реакции образования и превращения производных мочевины; открыл уреиды. Исследовал производные радикала аллила, синтезировал аллиловый спирт. Получил (1860-е гг.) дихлор- и тетрахлорбензол, толан и стильбен. Изучал (1870-е гг.) состав лепидена (тетрафенилфурана) и его производных. Совместно с Л. Л. Воскресенским является основателем большой школы русских химиков. В числе его учеников были Л. М. Бутлеров, Н. Н. Бекетов, А. П. Бородин и др. Зинин был почетным членом многих русских и иностранных научных обществ, академий и университетов.
НАШИ ЛЮДИ
Яскевич, Иоганн Доминик Пётр Химики
польский химик, геолог, минералог, врач, профессор зоологии, ботаники, минералогии и химии, придворный медик короля Станислава Августа Понятовского и лейб-медик маркиза Велепольского
Юхновский, Иван Химики
болгарский химик, 2008 председатель БАН
Юрьев, Юрий Константинович Химики
советский химик-органик, специалист в области химии гетероциклических соединений
Юдаев, Николай Алексеевич Химики
советский биохимик и эндокринолог
Ю Рён Химики
южнокорейский химик, лауреат национальных премий
Эткинс, Питер Химики
британский химик, бывший профессор химии Линкольн-колледжа Оксфордского университета
Эстрейхер, Тадеуш Химики
польский химик, историк, педагог, профессор неорганической химии Ягеллонского и Фрибурского университетов
Эрленмейер, Эмиль Химики
немецкий химик-органик, синтезировал изомасляную кислоту, гуанидин и -аминокислоты, установил строение спиртов и карбоновых кислот, исследовал независимо от Эльтекова перегруппировку енолов в альдегиды и кетоны, а также пинаколиновую перегруппировку, установил структурную формулу нафталина
Синтетическая биология
Крейг Вентер
Синтетическая биология — это проектирование и строительство новых биологических частей, устройств и систем. Она также включает в себя модернизацию существующих биологических систем для бесконечного количества полезных применений.
Крейг Вентер, один из ведущих специалистов в этой области, заявил в 2008-м году, что он воссоздал весь геном бактерии путем склеивания её химических компонентов. Два года спустя его команда создала «синтетическую жизнь» — молекулы ДНК, созданные при помощи цифрового кода, а затем напечатанные на 3D-принтере и внедрённые в живую бактерию.
В дальнейшем биологи намерены анализировать различные типы генома для создания полезных организмов для внедрения в тело и биороботов, которые смогут производить химические вещества — биотопливо — с нуля. Есть также идея создать борющуюся с загрязнениями искусственную бактерию или вакцины для лечения серьёзных болезней. Потенциал у этой научной дисциплины просто огромный.
Дальнейшая биография
В 1841 Зинин был утверждён экстраординарным профессором по кафедре технологии. В Казани он оставался до 1847, когда получил приглашение перейти на службу в Санкт-Петербург профессором химии в медико-хирургическую академию, где работал сначала в звании ординарного профессора (1848—1859 гг.), потом академика (с 1856 г.), заслуженного профессора (1864—1869 гг.), затем «директора химических работ» (1864—1874 гг.)
Профессорскую деятельность в академии Зинин совмещал со многими другими обязанностями: двенадцать лет (1852—1864) был учёным секретарем, два года (1869—1870) был членом и два года (1871—1872) председателем академического суда. Дважды (в 1864 и 1866) временно управлял академией. С 1848 он был членом мануфактурного совета министерства финансов, с 1855 — членом военно-медицинского ученого комитета. После основания при академии женских медицинских курсов Зинин в 1873—1874 читал там физику.
В 1855 избран адъюнктом Петербургской Академии наук, с 1858 — экстраординарным академиком, с 1865 — ординарным академиком.
В 1868 вместе с Д. И. Менделеевым, Н. А. Меншуткиным и др. выступил организатором Русского химического общества и в течение десяти лет являлся его президентом (до 1878).
Деятельность Зинина часто сопровождалась научными командировками: на Кавказ для исследования минеральных вод, в Крым для исследования грязей (1852), за границу — для изучения организации современных химических лабораторий, в связи с учреждением новой академической лаборатории (1860), на парижскую выставку — в качестве члена жюри (1867). Его последнее исследование относится к амаровой кислоте и ее гомологам. Осенью 1878 у Зинина проявились первые приступы болезни, приведшей к его смерти в 1880.
Слайд 24Синтез анилинаОдним из важнейших направлений исследований Зинина было изучение реакций окисления
и восстановления органических веществ. Восстанавливая нитробензол сероводородом, ему удалось синтезировать анилин, который до этого был получен Ю. Ф. Фрицше из красителя индиго. Теперь анилин можно было получать в промышленном масштабе. В 1844, пользуясь восстановительным действием гидросульфида аммония на динитросоединения, Зинин получил нафтилендиамин и фенилендиамин. Таким образом был открыт общий метод получения аминопроизводных из органических нитросоединений. Эти работы заложили научную основу для развития анилинокрасочной промышленности, открыли новую эру в промышленном производстве синтетических красителей, новых фармацевтических препаратов, душистых веществ и др.
Слайд 25Изучение нитроглицеринаНиколай Зинин успешно сочетал преподавание в академии и работу в
лаборатории. Совместное творчество Зинина с молодым инженером-артиллеристом В. Ф. Петрушевским привело к решению проблемы получения и использования сильнейшего взрывчатого вещества — нитроглицерина. Зинин разработал самый прогрессивный метод синтеза нитроглицерина из глицерина с использованием концентрированной азотной кислоты, низкой температуры и т. д. Когда в 1853 объединенная англо-французско-турецкая армия высадилась в Крыму и война приняла затяжной характер, Николай Зинин сделал все, чтобы русская армия имела на вооружении самые сильные взрывчатые вещества. Он предложил начинять нитроглицерином гранаты, разработал способ получения больших количеств нитроглицерина и способ его взрывания. Однако его предложения не были реализованы артиллерийским ведомством. Только в 1863 нитроглицерин начали успешно применять для подземных и подводных взрывов.
Личная жизнь
Известно, что в 1845 г. в Казани Николай Зинин заключил брак с женщиной много старше себя, вдовой. Она была его квартирной хозяйкой, и дружеские разговоры за вечерним чаем быстро переросли в глубокую привязанность. К несчастью, уже через год супруга скоропостижно скончалась от чахотки.
Во второй раз Зинин женился на Елизавете Александровне Медынцевой, происходившей из семьи текстильных фабрикантов. Он встретил ее в ложе петербургского оперного театра, и красота этой девушки произвела на него огромное впечатление. Через несколько месяцев Николай Николаевич сделал ей предложение.
В течение следующих четырех лет у пары один за другим родились четверо детей: двое сыновей (Святослав и Николай) и две дочери (Елизавета и Варвара). Младший сын, Николай (1854 г. р.), унаследовал от отца любовь к науке, стал талантливым математиком и впоследствии возглавил Донской Политехнический Институт.
Детство и юность
Н. Н. Зинин появился на свет в 1812 г., 13-го августа (25-го по «новому» стилю). Место рождения — город Шуша, служивший в те времена крепостью для Карабахского ханства. С 1805 г. начался переход ханства под юрисдикцию Российский империи, и Зинин Николай Иванович, отец будущего химика, находился в Шуше по делам дипломатического ведомства. Эпидемия холеры, бушевавшая в то время на Кавказе, унесла жизни отца, матери и двух старших сестер. Мальчик остался один. К счастью, его разыскал дядя из Саратова и взял под свое попечение.
В Саратове Николай поступил в гимназию, где стал одним из лучших учеников. Юноша отличался любознательностью, прекрасной памятью и значительной эрудицией, обладал превосходным знанием латинского языка, проявлял большой интерес к естественным наукам.
В 1930 г. он продолжил образование на математическом отделении Казанского университета, куда был принят на обучение за счет государственных средств. Способности студента были замечены ректором университета, знаменитым математиком Н. И. Лобачевским. После окончания трехлетнего курса с золотой медалью Николай был оставлен на кафедре физики, где стал преподавать студентам аналитическую механику и другие разделы физической науки.
Николай Зинин
Пластиковая электроника
Обычно электроника связана с инертными и неорганическими проводниками и полупроводниками вроде меди и кремния. Но новая отрасль электроники использует проводящие полимеры и проводящие небольшие молекулы, основой которых является углерод. Органическая электроника включает в себя разработку, синтез и обработку функциональных органических и неорганических материалов наряду с развитием передовых микро- и нанотехнологий.
По правде говоря, это не такая уж и новая отрасль науки, первые разработки были сделаны ещё в 1970-х годах. Однако свести все наработанные данные воедино получилось только недавно, в частности, за счёт нанотехнологической революции. Благодаря органической электронике у нас скоро могут появиться органические солнечные батареи, самоорганизующиеся монослои в электронных устройствах и органические протезы, которые в перспективе смогут заменить человеку повреждённые конечности: в будущем так называемые киборги, вполне возможно, будут состоять в большей степени из органики, чем из синтетических частей.
Когнитивная экономика
Как правило, экономика не связана с традиционными научными дисциплинами, но это может измениться из-за тесного взаимодействия всех научных отраслей. Эту дисциплину часто путают с поведенческой экономикой (изучением нашего поведения в контексте экономических решений). Когнитивная же экономика — это наука о том, как мы думаем. Ли Колдуэлл, автор блога об этой дисциплине, пишет о ней:
Иными словами, учёные начинают свои исследования на низшем, упрощённом уровне, и формируют микромодели принципов принятия решений для разработки модели масштабного экономического поведения. Часто эта научная дисциплина взаимодействует со смежными областями, например, вычислительной экономикой или когнитивной наукой.
Нутригеномика
Нутригеномика — это изучение сложных взаимосвязей между пищей и экспрессией генома. Учёные, работающие в этой области, стремятся к пониманию роли генетических вариаций и диетических реакций на то, как именно питательные вещества влияют на геном.
Еда действительно оказывает огромное влияние на здоровье — и начинается всё в буквальном смысле на молекулярном уровне. Нутригеномика работает в обоих направлениях: изучает, как именно наш геном влияет на гастрономические предпочтения, и наоборот. Основной целью дисциплины является создание персонализированного питания — это нужно для того, чтобы наша еда идеально подходила нашему уникальному набору генов.
Личные качества[править | править код]
При всём внешнем благополучии и несомненных творческих удачах Зинин, по воспоминаниям современников, был лишён душевного равновесия и раздражался в тех случаях, где другие учёные проявили бы искреннюю заинтересованность.
Немецкому ученому А. Гофману удалось модифицировать метод получения анилина из нитробензола, открытый Зининым. Гофман заменил сульфид аммония другим восстановителем — водородом в момент выделения. На основе модифицированного метода он организовал промышленное производство анилина, что вызвало раздраженную реакцию Зинина, приоритет которого никто не оспаривал: «Вечно немцы уводят открытия у нас из-под носа».
Исследуя нитропроизводные, Зинин вместе с В. Ф. Петрушевским начал работы над созданием взрывчатой композиции на основе нитроглицерина, безопасной при транспортировке. В итоге был найден хороший вариант — пропитка нитроглицерином карбоната магния. Об этом Зинин рассказывал своему соседу по даче Альфреду Нобелю, сыну Эммануила Нобеля — владельца завода по производству мин. Идея пригодилась А. Нобелю спустя несколько лет. Во время транспортировки нитроглицерина одна из бутылей разбилась, и жидкость пропитала инфузорную землю, насыпанную между бутылями для предупреждения возможного удара. Нобель, вероятно, вспомнивший рассказы Зинина о том, что нитроглицерином следует пропитывать порошкообразные вещества, достаточно быстро оценил свойства образовавшейся композиции, названной впоследствии динамитом и принёсшей ему громадные прибыли. Узнав все это, Зинин заметил: «Этот Альфред Нобель выхватил у нас динамит из-под носа».
Однако нет никаких оснований полагать, что Зинин был тщеславен и болезненно ревниво относился к успехам коллег. Скорее всего, отсутствие внутренней гармонии — результат интуитивного ощущения того, что в другой области — в математике — он, возможно, сумел бы достичь большего. До последних дней самым любимым его занятием было чтение различных математических работ.
Слайд 31Научная деятельность В 1893 Н. Зелинский назначен профессором Московского университета. Этот период
был для него очень плодотворным. Диапазон интересов ученого был исключительно широк. С 1893 по 1911 год им было опубликовано свыше 200 научных статей. В 1906 впервые разработал доступный метод получения альфа-аминокислот, объяснил механизм реакции, синтезировал большое количество аминокислот. Важным объектом научных исследований этого периода стала нефть — сложная смесь органических соединений. Продолжая исследования российского химика Владимира Васильевича Марковникова, он усиленно разрабатывал проблему рационального использования нефти, в частности вопросы ее ароматизации. В 1911 Зелинский открыл дегидрогенизационный катализ нафтенов с применением платины и палладия. Результатом этих исследований явился пуск первого в России производства термического крекинга нефти. В годы Первой мировой войны 1914-1918 Николай Зелинский активно проводил исследования в области каталитического крекинга и пиролиза нефти, которые способствовали заметному повышению выхода толуола — сырья для получения тринитротолуола (тротила, тола). Это исследование имело первостепенное значение для оборонной промышленности. Он впервые предложил в качестве катализаторов для дегидрогенизации углеводородов нефти использовать доступные алюмосиликаты и окисные катализаторы, которые используются и в наше время. В Петербурге Зелинский разработал средство защиты от боевых отравляющих веществ — угольный противогаз.
Заключение
За границей ученый известен, прежде всего, благодаря «реакции Зинина», или реакции восстановления. Благодаря этому способу получение анилина значительно удешевилось, и стало возможным его производство в промышленных масштабах.
Между тем, открытие Зинина имело глобальное значение для мировоззрения химиков того времени. Прежде большинство из них считало, что органические, то есть естественные, природные вещества нельзя получить искусственным путем. «Реакция Зинина», опровергнув эти представления, стала в основании органического синтеза — новой эпохи в истории химии.
Н. Н. Зинин был активным участником тех реформ середины XIX века, что привели к взлету отечественной химической науки и, в огромной части, к росту промышленного производства. Благодаря его педагогическому таланту и умению увлечь своими научными идеями учеников Россия получила целый ряд выдающихся ученых-химиков.
Слайд 33ИтогиПолучил (1887 г.) ряд гомологов тиофенаСинтезировал (1901-1907 гг.) многочисленные углеводороды, содержащие
от 3 до 9 атомов углерода в кольце.Открыл (1910 г.) явление дегидрогенизационного катализа.Совместно с инженером А. Кумантом создал (1916 г.) противогаз.Открытие (1911 г.) необратимого катализа.Получил (1924 г.) алициклические кетоны каталитическим ацилированием нефтяных цикланов.Осуществил (1931-1937 гг.) процессы каталитической и пирогенетической ароматизации нефтей.Совместно с Н. С. Козловым впервые в СССР начал (1932 г.) работы по получению хлоропренового каучука.Синтезировал труднодоступные нафтеновые алкоголи и кислоты.Разработал (1936 г.) методы обессеривания высокосернистых масел.Является одним из основоположников учения об органическом катализе.Выдвинул идеи о деформации молекул реагентов в процессе адсорбции на твердых катализаторах.Совместно со своими учениками открыл реакции селективного каталитического гидрогенолиза циклопентановых углеводородов (1934 г.), деструктивного гидрирования, многочисленные реакции изомеризации (1925-1939 гг.), в том числе взаимные превращения циклов в направлении, как их сужения, так и расширения.
Экспериментально доказал образование метиленовых радикалов в качестве промежуточных соединений в процессах органического катализа.Внес существенный вклад в решение проблемы происхождения нефти. Был сторонником теории органического происхождения нефти.Проводил исследования в области химии аминокислот и белка. Открыл (1906 г.) реакцию получения aльфа-аминокислот из альдегидов или кетонов действием смеси цианистого калия с хлористым аммонием и последующим гидролизом образующихся aльфа-аминонитрилов. Синтезировал ряд аминокислот и оксиаминокислот.
Разработал методы получения эфиров аминокислот из их смесей, образующихся при гидролизе белковых тел, а также способы разделения продуктов реакции.
Конец.