Свойства алмаза 3 класс

Как измерить высоту здания с помощью барометра

В известной истории рассказывается о различных способах измерения высоты здания с помощью барометра: используя его как массу для отвеса или как маятник, собственная частота которого будет измеряться, как масса для измерения времени падения, как товар. подкупить охрану здания… «Ожидаемая реакция» (измерение разницы давлений между дном и верхом) упоминается только в последнюю очередь.

Эта история была опубликована в Reader’s Digest в 1958 году и со временем превратилась в якобы реальный анекдот, приписываемый Нильсу Бору, став современной легендой . Возникает вопрос, не является ли использование этого известного человека способом превратить забавный анекдот в брошюру против «жесткости школьного образования» в противоположность «творчеству».

Принцип работы

Принцип работы электронного термометра значительно отличается от классического ртутного, что логично. Указание температуры во втором происходит за счет увеличения объема ртути при нагревании, что по большому счету делает неважным то, как его держать. В электронных же термометров датчик находится на конце, поэтому только нагрев этой части влияет на показания. В остальной части термометра только провода. Именно по этой причине надо внимательно следить за положением градусника, чтобы добиться точности. Если контакт с телом неплотный или датчик частично свободен, то температура будет ниже.

Погрешность электронного градусника может быть достаточно большой (1,5 градуса), особенно если измеряли температуру вы неправильно и быстро.

Приборы для измерения атмосферного давления

Для научных и житейских целей нужно уметь измерять атмосферное давление. Для этого существуют специальные приборы – барометры. Нормальным атмосферным давлением называют давление на уровне моря при температуре 15 °C. Оно равно 760 мм рт. ст. Нам известно, что при изменении высоты на 12 метров атмосферное давление изменяется на 1 мм рт. ст. Причём, при увеличении высоты атмосферное давление понижается, а при уменьшении – повышается.

Современный барометр сделан безжидкостным. Он называется барометр-анероид. Металлические барометры менее точны, но не столь громоздки и хрупки.

Барометр-анероид – очень чувствительный прибор. Например, поднимаясь на последний этаж девятиэтажного дома, из-за различия атмосферного давления на различной высоте мы обнаружим уменьшение атмосферного давления на 2-3 мм рт. ст.

Барометр может служить для определения высоты полета самолета. Такой барометр называется барометрический высотомер или альтиметр. Идея опыта Паскаля легла в основу конструкции альтиметра. Он определяет высоту подъема над уровнем моря по изменению атмосферного давления.

При наблюдении погоды в метеорологии, если необходимо зарегистрировать колебания атмосферного давления в течение некоторого промежутка времени, пользуются самопишущим прибором – барографом.

Штормгласс (Storm Glass) (штормглас, нидерл. storm — «буря» и glass — «стекло»)— это химический или кристаллический барометр, состоящий из стеклянной колбы или ампулы, заполненных спиртовым раствором, в котором в определённых пропорциях растворены камфора, нашатырь и калийная селитра.

Этим химическим барометром активно пользовался во время своих морских путешествий английский гидрограф и метеоролог, вице-адмирал Роберт Фицрой, который тщательно описал поведение барометра, это описание используется до сих пор. Поэтому, штормгласс также называют «Барометром Фицроя». В 1831–36 Фицрой возглавлял океанографическую экспедицию на корабле «Бигл», в которой участвовал Чарльз Дарвин.

Барометр работает следующим образом. Колба герметически запаяна, но, тем не менее, в ней постоянно происходит рождение и исчезновение кристаллов. В зависимости от грядущих изменений погоды, в жидкости образуются кристаллы различной формы. Штормгласс настолько чувствителен, что может предсказывать резкое изменение погоды за 10 минут до такового. Принцип работы так и не получил полного научного объяснения. Барометр лучше работает находясь у окна, особенно в железобетонных домах, вероятно в этом случае барометр не так сильно экранируется.

Бароскоп – прибор для наблюдения за изменением атмосферного давления. Можно сделать бароскоп своими руками. Для изготовления бароскопа требуется следующее оборудование: Стеклянная банка объемом 0,5 литра.

  1. Кусок пленки от воздушного шарика.
  2. Резиновое кольцо.
  3. Легкая стрелка из соломы.
  4. Проволока для крепления стрелки.
  5. Вертикальная шкала.
  6. Корпус прибора.

Зависимость давления жидкости от высоты столба жидкости в жидкостных барометрах

При изменении атмосферного давления в жидкостных барометрах изменяется высота столба жидкости (воды или ртути): при уменьшении давления – уменьшается, при увеличении увеличивается. Значит, существует зависимость высоты столба жидкости от атмосферного давления. Но и сама жидкость давит на дно и стенки сосуда.

Французский ученый Б. Паскаль в середине XVII века эмпирически установил закон, названный законом Паскаля:

Для иллюстрации закона Паскаля на рисунке изображена небольшая прямоугольная призма, погруженная в жидкость. Если предположить, что плотность материала призмы равна плотности жидкости, то призма должна находиться в жидкости в состоянии безразличного равновесия. Это означает, что силы давления, действующие на грани призмы, должны быть уравновешены. Это произойдет только в том случае, если давления, т. е. силы, действующие на единицу площади поверхности каждой грани, одинаковы: p1 = p2 = p3 = p.

Давление жидкости на дно или боковые стенки сосуда зависит от высоты столба жидкости. Сила давления на дно цилиндрического сосуда высоты h и площади основания S равна весу столба жидкости mg, где m = ρghS – масса жидкости в сосуде, ρ – плотность жидкости. Следовательно p = ρghS / S

Такое же давление на глубине h в соответствии с законом Паскаля жидкость оказывает и на боковые стенки сосуда. Давление столба жидкости ρgh называют гидростатическим давлением.

Во многих устройствах, встречающихся нам в жизни, используются законы давления жидкости и газов: сообщающиеся сосуды, водопровод, гидравлический пресс, шлюзы, фонтаны, артезианский колодец и т.д.

Атмосферное давление и опыт Торричелли

Атмосфера Земли — это смесь различных газов, удерживающихся возле планеты благодаря действию силы тяжести на их молекулы, которые одновременно и беспрерывно двигаются, создавая давление. Это давление называют атмосферным.

Доказать существование атмосферного давления можно при помощи простых опытов.

Какие последствия действия атмосферного давления

Если взять трубку с поршнем, опустить ее одним концом в сосуд с водой и поднимать поршень вверх, то вода будет подниматься вслед за поршнем (рис. 102). Это возможно только тогда, когда давление воды в сосуде будет больше, чем под поршнем. За счет весового давления вода не сможет подниматься, так как уровень воды под поршнем выше, чем в сосуде, а поэтому и его давление больше. Вода должна вылиться обратно в сосуд. Следовательно, на жидкость в сосуде действует дополнительное давление, значение которого больше давления жидкости столба воды под поршнем. Это давление создают молекулы атмосферного воздуха. Действуя на свободную поверхность воды, атмосферное давление согласно закону Паскаля передается во всех направлениях одинаково.

Так как под поршнем воздуха нет, то вода будет заходить в трубку под действием неуравновешенного давления.

Каково значение атмосферного давления

Значение атмосферного давления достаточно большое. Убедиться в этом можно на многих опытах.

Возьмем два полых полушария, имеющие хорошо отшлифованные поверхности сечений. В одной из них есть специальный штуцер с краном, через который можно откачивать воздух.

Подвесим к штативу одно из полушарий, присоединим к нему снизу другое и начнем откачивать насосом через кран воздух из полости. Нижнее полушарие крепко прижмется к верхнему. Это возможно только тогда, когда давление в полости шара будет меньше давления снаружи.

В результате действия воздушного насоса, который откачивает воздух, давление в полости полушарий уменьшится, а наружное давление останется без изменений. Поэтому нижнее полушарие плотно прижмется к верхнему.    ЮЗ

О значении силы при некотором уменьшении давления в шаре можно судить по массе груза, который может удерживаться, если его подвесить к нижнему полушарию. Если же открыть кран и в полость шара зайдет воздух, то нижнее полушарие вместе с грузом отпадет.

Как начали исследовать атмосферное давление

Подобный опыт провел и описал в 1654 г. немецкий физик, бургомистр города Магдебург а Отто Герике.

Отто Герике (1602-1686) — немецкий физик, который экспериментально изучал атмосферное давление. С помощью «магдебургских полушарий» он продемонстрировал действие атмосферного давления. Изучал также электрические явления, объяснил природу трения. Сконструировал первую электрическую машину.

Это событие осталось в истории науки благодаря образной гравюре того времени (рис. 103).

В современном производстве используют множество приспособлений, основанных на действии атмосферного давления. Для расчетов результатов их работы нужно знать значение атмосферного давления.

Способ измерения атмосферного давления впервые предложил итальянский ученый Эванджелиста Торричелли.

 Эванджелиста Торричелли (1608-1647) — итальянский ученый. Первым измерил атмосферное давление с помощью сконструированного им ртутного барометра. Доказал, что высота ртутного столба барометра равна примерно высоты водяного столба.

Он установил, что если закрытую с одной стороны трубку заполнить полностью ртутью, перевернуть ее и опустить в сосуд с ртутью, то выльется только часть этой ртути (рис. 104). Высота столба ртути в его опытах была примерно 760 мм. Результаты опыта дали возможность сделать вывод, что давление ртутного столба уравновешивается атмосферным давлением, которое действует на свободную поверхность ртути в сосуде. Атмосферное давление при таких условиях называют нормальным. С того времени в науку была введена единица измерения атмосферного давления — миллиметр ртутного столба (мм рт. ст.).

Как рассчитать атмосферное давление

Выразим значение давления столба ртути высотой 760 мм (нормальное) в системных единицах измерения давления паскалях. Из предыдущих параграфов известно, что давление жидкости рассчитывается по формуле:

Учитывая, что плотность ртути получаем

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Манометры в физике
  • Барометры в физике
  • Жидкостные насосы в физике
  • Выталкивающая сила в физике
  • Движение жидкостей и газов
  • Гидравлические машины в физике
  • Весовое давление жидкостей в физике
  • Сообщающиеся ссуды в физике

Противопоказания

Целебные свойства березы неоспоримы, но не будем забывать, что весной многие страдают по-настоящему из-за аллергии на пыльцу этих красивых деревьев. Если кто-то в окружении берёз чувствует себя как в раю и исцеляется, для кого-то березовый лес – это место, где он чувствует себя плохо.

  1. Березовая пыльца является сильнодействующим аллергеном и препараты из березы противопоказаны людям, страдающим чувствительностью к ней.
  2. Людям с почечной или сердечной недостаточностью лучше избегать лечения препаратами березы.
  3. Лечение березой противопоказаны беременным и кормящим матерям.
  4. Листья березы содержат сапонины, которые обладают лечебным эффектом в малых дозах, но являются токсичными в больших количествах. Поэтому никогда не нужно превышать рекомендуемую дозу.

Память о Бородине

Благодарные потомки бережно хранят память о тех далеких днях. Маргарита Нарышкина, вдова генерала Тучкова, на месте Багратионовых флешей основала православный женский монастырь, в уставе которого было предписано:

Через 8 лет после даты Бородинского сражения на территории обители был освящен первый храм в честь воинской доблести русских солдат.

Спустя 27 лет на месте расположения легендарной батареи Раевского по указу царя Николая I был открыт памятник. К подножию монумента перенесли прах князя Багратиона. Через 100 лет на поле брани были открыты еще 33 памятника подразделениям русской армии.

Сегодня Бородинское поле – это музей под открытым небом. На территории площадью 110 квадратных километров расположено более 200 монументов и обелисков. В течение многих лет первое воскресенье сентября собирает тысячи людей для участия и просмотра военно-исторической реконструкции событий 1812 года.

Все дальше от нас тревожный 1812 год – далекая страница славной истории России. Время неудержимо идет, меняется мир, сменяются поколения. Но славный подвиг наших предков, совершенный на ратном поле во имя защиты Отечества, никогда не даст забыть, в каком году было Бородинское сражение и что оно значило для России.

История происхождения породы

На начальных этапах в Германии сначала вывели, а затем начали разводить собак, отличающихся белым окрасом, которых называли «поммирле». Собаки, отличающиеся черным окрасом, содержались в Вюртемберге, где они активно применялись для охраны плантаций виноградников. Если верить историческим данным, в те времена померанцы отличались несколько большими размерами по сравнению с выведенной породой. Их в основном использовали бедняки для охраны своих жилищ и не больших лодок, которые им принадлежали.

В период правления королевы Виктории эти животные были завезены из Померании в Англию, после чего начались серьезные работы по выведению карликовой формы, по формированию экстерьера, а также по усовершенствованию внешнего вида животного. Кстати, королева Виктория так любила померанского шпица, что никогда не расставалась с ним.

Лучшие особи, выведенные английскими и американскими заводчиками, считались близким эталоном по отношению к настоящим померанцам. В период первой мировой войны погибла значительная часть особей. В связи с этим, немецкие заводчики и селекционеры были вынуждены ввозить собак с других стран Европы, чтобы восстановить поголовье.

Это интересно! В нашей стране эту породу собак на протяжении длительного периода называли цверг-шпицем, из-за своих миниатюрных размеров, несмотря на то, что свое уникальное название порода получила в связи с названием исторической земли современной Германии.

Жидкостные термометры

Жидкостные термометры

Первый жидкостный термометр, показания которого не зависели от перепадов атмосферного давления, был создан в середине 17 века во Флорентийской Академии под покровительством герцога Тосканского Фердинанда 2. Этот прибор вместо воздуха содержал окрашенный спирт, а верхний конец его трубки запаяли. Искусные флорентийские мастера создавали стеклянные термометры, а деление шкалы наносили расплавленной эмалью с завидной точностью. По этим шкалам можно было проводить замеры с точностью до 1 градуса. Многие такие термометры представляли собой настоящие произведения искусства. Но возникла проблема –в каких единицах измерять температуру? И что считать её критическими точками? Привычной нам шкалы ещё не было, и учёные придумали свои собственные способы измерения температуры воздуха.

Немецкий физик и инженер Отто фон Герихе создал в 1672 году семиметровый водно-спиртовой прибор. Его шкала имела восемь делений — от великой жары до великого холода, а температуру указывала своим перстом позолоченная фигура ангела. Та точка, в которой ангел замирал при первых заморозках, была выбрана за начало шкалы. О том, что брать за начало отсчёта градусов, в разное время учёные думали по-разному. Однако все ждали подсказок от самого распространённого на Земле вещества –воды.

Гюйгенс в 1665 году предложил использовать в качестве опорной точку кипения воды. В 1701 году Ньютон написал работу о шкале степеней жары и холода. Его шкала имела 12 градусов. Ноль находился в точке замерзания воды, а 12 градусов соответствовали температуре здорового человеческого тела.

Кто превратил термометр в градусник?

Повседневной вещью и хрестоматийным медицинским прибором термометр стал в 19 веке, когда он превратился в компактный градусник. Главная заслуга в этом деле принадлежит английскому врачу Томасу Олбату, а вот в России включение термометрии в клиническую практику тесно связано с именем великого терапевта Сергея Петровича Боткина.

Новый виток изобретения термометров начался с конца двадцатого века. Высокие технологии всерьёз взялись за этот прибор, и началось такое, что простыми человеческими словами и не описать. Температуру стало возможно измерять с высокой точностью и безо всякого контакта с исследуемой поверхностью, так что, хотите или нет, а посредством тепловизора врач может определить ваше самочувствие на приличном расстоянии, а при наличии хорошего тепловизора –даже через стену…

Упражнения

Упражнение №1

На рисунке 6 изображен водяной барометр, созданный Паскалем в 1646 году. Какой высоты был столб воды в этом барометре при атмосферном давлении, равном 760 мм рт. ст.?

Дано:$p = 760 \space мм \space рт. \space ст.$$\rho = 1000 \frac{кг}{м^3}$$g = 9.8 \frac{Н}{кг}$

СИ:$p = 101 \space 308 \space Па$

$h — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Зная давление, которое оказывает столб воды в барометре, мы можем рассчитать его высоту, используя формулу:$p = \rho gh$.

Выразим высоту и рассчитаем ее:$h = \frac{p}{\rho g}$,$h = \frac{101 \space 308 \space Па}{1000 \frac{кг}{м^3} \cdot 9.8 \frac{Н}{кг}} \approx 10.3 \space м$.

Ответ: $h \approx 10.3 \space м$.

Упражнение №2

В 1654 году Отто Герике в городе Магдебурге, чтобы доказать существование атмосферного давления, провел такой опыт. Он выкачал воздух из полости между двумя металлическими полушариями, сложенными вместе. Давление атмосферы так сильно прижало полушария друг к другу, что их не могли разорвать восемь пар лошадей (рисунок 9). Вычислите силу, сжимающую полушария, если считать, что она действует на площадь, равную $2800 \space см^2$, а атмосферное давление равно 760 мм рт. ст.

Рисунок 9. Опыт Отто Герике

Дано:$S = 2800 \space см^2$$p = 760 \space мм \space рт. \space ст.$

СИ:$S = 0.28 \space м^2$$p = 101 \space 308 \space Па$

$F — ?$

Посмотреть решение и ответ

Скрыть

Решение:

Давление по определению определяется отношением силы, действующей перпендикулярно поверхности, к площади этой поверхности:$p = \frac{F}{S}$.

Выразим из этой формулы силу и рассчитаем ее:$F = pS$,$F = 101 \space 308 \space Па \cdot 0.28 \space м^2 = 28 \space 366.24 \space Н \approx 28.4 \space кН$.

Ответ: $F \approx 28.4 \space кН$.

Упражнение №3

Из трубки длиной $1 \space м$, запаянной с одного конца и с краном на другом конце, выкачали воздух. Поместив конец с краном в ртуть, открыли кран. Заполнит ли ртуть всю трубку? Если вместо ртути взять воду, заполнит ли она всю трубку?

Посмотреть ответ

Скрыть

Ответ:

Среднее значение атмосферного давления составляет 760 мм. рт. ст. Когда мы откроем кран, жидкость будет заходить в трубку под действием атмосферного давления.

Ртуть поднимется в трубке до высоты в 760 мм (рисунок 10, а). Это следует из самого определения миллиметров ртутного столба.

Вода же заполнит трубку полностью (рисунок 10, б). Высоту столба жидкости мы можем рассчитать по формуле: $h = \frac{p}{\rho g}$. На жидкости действует только атмосферное давление — оно будет иметь одинаковую величину и для ртути, и для воды. Значит, остается плотность жидкости. Чем она больше, тем меньше высота. Плотность воды намного меньше плотности ртути, поэтому она заполнит трубку полностью.

Рисунок 10. Заполнение трубки ртутью и водой

В упражнении №1 мы уже рассчитали высоту столба жидкости. Она составила $10.3 \space м$. Но наша трубка имеет высоту всего $1 \space м$. Так, вода не только заполнит трубку полностью, но и будет оказывать дополнительное давление на нее изнутри.

Упражнение №4

Выразите в гектопаскалях давление, равное: 740 мм рт. ст.; 780 мм рт. ст.

Посмотреть ответ

Скрыть

Ответ:

$p_1 = 740 \cdot 1.3 \space гПа = 962 \space гПа$,$p_2 = 780 \cdot 1.3 \space гПа = 1014 \space гПа$.

Упражнение №5

Рассмотрите рисунок 3. Ответьте на вопросы.

  1. Почему для уравновешивания давления атмосферы, высота которой достигает десятков тысяч километров, достаточно столба ртути высотой около 760 мм?
  2. Сила атмосферного давления действует на ртуть, находящуюся в чашке, сверху вниз. Почему же атмосферное давление удерживает столб ртути в трубке?
  3. Как повлияло бы наличие воздуха в трубке над ртутью на показания ртутного барометра?
  4. Изменится ли показание барометра, если трубку наклонить; опустить глубже в чашку со ртутью?

Посмотреть ответ

Скрыть

Ответ:

  1. Давление, оказываемое жидкостью или газом, зависит от его плотности ($p = \rho gh$). Чем больше плотность, тем больше давление. Плотность ртути составляет $13 \space 600 \frac{кг}{м^3}$, а воздуха у поверхности Земли — $1.29 \frac{кг}{м^3}$. При этом плотность воздуха очень сильно уменьшается с увеличением высоты. Именно поэтому давление столба ртути высотой $760 \space мм$ уравновешивает атмосферное;
  2. Атмосферное давление действует на ртуть в чашке. В самой ртути давление передается по закону Паскаля одинаково по всем направлениям. Так давление и действует на столб ртути снизу вверх;
  3. Если бы в трубке был воздух, то при подъеме ртути он бы сжимался. Тем самым сжатый воздух создавал бы дополнительное давление на столб ртути, что исказило бы показания барометра;
  4. Нет, показания не изменятся. Ведь вес ртути при таких манипуляциях не изменится, а значит, не изменится и ее давление.

Виды термометров

Как уже говорилось, все термометры можно классифицировать в зависимости от устройства и принципа работы на жидкостные, механические, газовые, оптические, электронные.

Жидкостные

В принцип действия жидкостных термометров, как это понятно из их названия, заложено изменение объема жидкости, заполняющей столбик устройства, при понижении или повышении окружающей температуры. В качестве жидкости, чаще всего, используется ртуть или спирт. Кроме спиртов и ртути, применяют также:

Наиболее характерным жидкостным термометром является обычный градусник для измерения температуры тела. Подобные устройства можно встретить у многих людей, которым интересна температура в комнатах или в других помещениях, например, в сауне. Используются они и для термометрии на открытом воздухе.

В связи с тем, что ртуть представляет опасность для здоровья, ее использование постепенно подпадает под запрет. Сейчас в термометрах начинают использовать другие жидкие металлы и их сплавы, например, галистан, в в состав которого входят:

Такой наполнитель идеально подходит для замеров тел с высокой температурой. На замену ртутным градусникам все чаще приходят другие типы устройств, в том числе механические и электронные.

Механические

Такие термометры используют в качестве индикатора стрелку, закрепленную на спиральной пружине или биметаллической ленте. В зависимости от температуры пружина скручивается или разжимается, и стрелка движется вдоль шкалы с градусами. Такие градусники не отличаются точностью показаний и используются обычно в быту, когда максимальная точность не особо важна.

Следующей разновидностью являются газовые приборы.

Газовые

Устройства, использующие для определения температуры газов, основаны на принципе, изложенном в законе Шарля. В соответствии с ним в газах, остающихся в одном объеме, повышается давление при их нагревании. И, наоборот, давление газообразного вещества снижается, если оно остывает.

Исходя из установленной пропорции и замеряя повышение или понижение давления идеального газа, можно определить температуру измеряемой среды или вещества. Наиболее точные показания выдает термометр, где рабочим веществом является водород или гелий.

Оптические

Пожалуй, одними из самых востребованных на сегодня устройств измерения температуры являются оптические термометры. Они позволяют делать замеры на расстоянии, не соприкасаясь с телом или предметом измерения.

К такому виду относятся инфракрасные термометры, применяемые в медицине. Они улавливают тепловые, инфракрасные, лучи и, после их электронной обработки, выдают на дисплей температурный показатель. Своим принципом работы такие устройства схожи с тепловизорами, но отличаются более высокой точностью.

Еще одним поводом к тому, что такие приборы становятся все более востребованными, стал запрет на ртутные градусники. Уже с 2030 года в нашей стране будет запрещено использовать устройства для измерения температуры с ртутью в качестве рабочего вещества.

Электронные

Электронные термометры показывают температуру, оценивая изменение электрической сопротивляемости проводника, которая зависит от степени его нагрева. В более широкодиапазонных устройствах применяется термопара.

При этом учитывается разность потенциалов на контактах металлических проводников с отличающейся электроотрицательностью. Контактная разность меняется в зависимости от окружающей температуры. Самыми точными устройствами признаны те, в которых используется платиновая проволока или керамика с платиновым напылением.

Кроме приведенных устройств выделяют еще технические термометры, а также приборы для фиксации максимальной и минимальной температуры.

Технические термометры

Технические термометры нашли свое применение в различных сферах промышленности, начиная с сельскохозяйственной и заканчивая тяжелым машиностроением.

Среди них выделяют:

В зависимости от способа фиксации показателей, приборы измерения температуры могут классифицироваться как:

Примером максимального термометра служит градусник для измерения температуры тела. После того, как ртуть или жидкость поднимается по шкале, она остается на максимальном уровне, а не опускается вниз. Минимальные устройства фиксируются на минимуме температуры. Нефиксируемые изменяют свои показания в зависимости от интенсивности прогрева или остывания среды измерения.

Измерительные приборы

Для измерения различных величин используются специальные измерительные приборы. Одни из них очень просты и предназначены для простых измерений. К таким приборам можно отнести измерительную линейку, рулетку, измерительный цилиндр и др. Другие измерительные приборы более сложные. К таким приборам можно отнести секундомеры, термометры, электронные весы и др.

Измерительные приборы, как правило, имеют измерительную шкалу (или кратко шкалу). Это значит, что на приборе нанесены штриховые деления, и рядом с каждым штриховым делением написано соответствующее значение величины. Расстояние между двумя штрихами, возле которых написано значение величины, может быть дополнительно разделено ещё на несколько более малых делений, эти деления чаще всего не обозначены числами.

Определить, какому значению величины соответствует каждое самое малое деление, не трудно. Так, например, на рисунке ниже изображена измерительная линейка:

Цифрами  1,  2,  3,  4  и т. д. обозначены расстояния между штрихами, которые разделены на  10  одинаковых делений. Следовательно, каждое деление (расстояние между ближайшими штрихами) соответствует  1 мм.  Эта величина называется ценой деления шкалы измерительного прибора.

Перед тем как приступить к измерению величины, следует определить цену деления шкалы используемого прибора.

Для того чтобы определить цену деления, необходимо:

  1. Найти два ближайших штриха шкалы, возле которых написаны значения величины.
  2. Вычесть из большего значения меньшее и полученное число разделить на число делений, находящихся между ними.

В качестве примера определим цену деления шкалы термометра, изображённого на рисунке слева.

Возьмём два штриха, около которых нанесены числовые значения измеряемой величины (температуры).

Например, штрихи с обозначениями  20 °С  и  30 °С.  Расстояние между этими штрихами разделено на  10  делений. Таким образом, цена каждого деления будет равна:

(30 °С — 20 °С) : 10 = 1 °С

Следовательно, термометр показывает  47 °С.

Измерять различные величины в повседневной жизни приходится постоянно каждому из нас. Например, чтобы прийти вовремя в школу или на работу, приходится измерять время, которое будет потрачено на дорогу. Метеорологи для предсказания погоды измеряют температуру, атмосферное давление, скорость ветра и т. д.

История создания термометра

Идея создания термоскопа пришла Галилею после изучения трудов греческого математика, жившего в I в.н.э, Герона Александрийского. Изначальным замыслом не предусматривалось измерение температуры. Устройство использовалось, чтобы демонстрировать подъем воды в зависимости от нагревания воздуха.

Термоскоп изготавливался из стеклянной трубки, полой, с одной стороны, и с припаянным шариком, с другой. Работало устройство следующим образом:

  1. Шарик нагревали и конец трубки опускали в воду.
  2. По мере того, как воздух в шарике начинал остывать и сжиматься, вода поднималась вверх по трубке.
  3. При повышении температуры воздуха уровень воды в трубке снова понижался.

Измерить термоскопом температуру было невозможно. Он не был градуирован, да и уровень подъема воды зависел не только от степени нагрева воздуха, но и от окружающего давления. Почти через 60 лет после смерти Галилея (в 1657 году) его термоскоп усовершенствовали ученые из Флоренции.

Термоскопу добавили шкалу-бусины и герметично запаяли трубку, удалив из нее воздух, залив внутрь спирт и перевернув. До того, как стали использовать винный спирт, трубки лопались при замерзании воды. То, что именно спирт позволит сохранить целостность колбы при отрицательных температурах, предположил Фердинанд II — тосканский герцог. С 1654 года мастера стали заливать в термоскопы алкоголь.

Сосуд стал не нужен для работы прибора, поэтому от него избавились. В зависимости от температуры воздуха, бусины поднимались или опускались. А в качестве исходных точек для измерения использовали отметки, сделанные в самый жаркий и самый холодный дни года.

Наряду с Галилеем, первенство в создании устройств, которые фиксировали изменения температуры окружающего воздуха приписывают:

  • лорду Бэкону;
  • Санториусу;
  • Роберту Фладду;
  • Скарпи;
  • Саломону де Коссу;
  • Порте;
  • Корнелиусу Дреббелю.

Хотя де Косс был лично знаком с Галилеем, поэтому мог увидеть его изобретение. Устройства других исследователей тоже были созданы по принципу термоскопа и зависели от температуры, так же, как и от атмосферного давления.

Следующим ученым, внесшим вклад в эволюцию термометра, стал французский ученый Гийом Амонтон, живший в 1663–1705 гг. Он стал измерять степень увеличения упругости воздуха, а не его расширение. Свои опыты Амонтон проводил, используя открытую трубу, изогнутую к нижней части и переходящую в замкнутую круглую полость. Подливая в трубку ртуть, ученый фиксировал изменения объема воздуха в зависимости от температуры.

Второй термометр Амонтона был герметичен и независим от окружающего давления. Его устройство включало в себя коленчатую трубку с раствором углекислого калия и нефтью, которая заканчивалась резервуаром с воздухом. Но этому сифонному барометру было еще очень далеко до совершенства современных термометров.

Тем, как выглядит современный термометр мы обязаны германскому ученому 18 века Габриэлю Фаренгейту. Начав с заполнения трубок спиртом, позднее он стал заполнять их ртутью. Фаренгейт установил ноль своей шкалы на отметке температуры смеси поваренной соли или нашатыря со снегом. Сделав градуирование, Фаренгейт установил, что вода начинает кипеть при 212⁰, а замерзает при 32⁰. Температура человеческого тела, при помещении термометра под мышку, составила 96⁰.

Метеоролог из Швеции Андерс Цельсий поставил точки кипения воды и таяния льда совсем не так, как это выглядит на современных градусниках. По его шкале вода закипала при 0⁰, тогда как лед начинал таять при 100⁰. Последователям оставалось лишь перевернуть шкалу, чтобы она приняла сегодняшний вид. Сделали это шведские ученые Карл Линней и Мортен Штремер. Кроме изобретения своей шкалы, Цельсий предсказал, что температура кипения воды может отличаться в зависимости от расположения местности относительно уровня моря. Зная этот уровень предполагалось проводить калибровку измерительных приборов.

Бытует мнение, что шкала должна называться именем Штремера и носит имя Цельсия из-за ошибки, допущенной химиком Иоганном Якобом в своей научной работе.

Еще одним человеком, оставившим след в истории создания измеряющего температуру устройства, является француз Рене Антуан Реомюр. Его работы стали причиной появления шкалы, градуированной в 80⁰. Несмотря на большой вклад в науку, прибор Реомюра не получил распространения и стал своеобразным шагом назад по сравнению с устройствами Фаренгейта. Фаренгейт и Реомюр стали последними, кто самостоятельно изготавливали свои термометры. После них этим стали заниматься ремесленники, зарабатывавшие на продажах устройств измерения температуры.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Росспектр
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: