Астрономия

Место Млечного пути во Вселенной

Гавайские астрономы определили наши космические координаты. Млечный Путь является частью огромного сверхскопления галактик Ланиакея. Сверхскопления – это крупнейшие структуры в космосе. Они состоят из локальных скоплений и массивных кластеров. В каждом из них находятся сотни галактик. Все они связаны между собой.


Красной точкой отмечена галактика Млечный путь в сверхскоплении галактик Ланиакея

В Ланиакее находится сверхскопление Девы. Составной его частью является Местная группа с Великим аттрактором. В Местной группе находится Млечный путь. Ланиакея является частью комплекса Рыб-Кита. Астрономы пока не могут изучить движение объектов в Ланиакее. Предполагается, что наша галактика Млечный Путь постепенно направляется вглубь этого скопления.

Люди и животные

Некоторые послания Высшие силы передают не напрямую. Они используют других людей и даже животных, чтобы донести информацию до адресата. Например:

Человек разговаривает с другом, смотря при этом фильм. Он произносит важную мысль и слышит, как на экране главный герой сказал почти такую же фразу

Как не обратить на это внимание. А это значит, что все верно

Нужно придерживаться этой мысли, не отклоняться от нее.
Или женщина, запутавшаяся в своих чувствах, хочет отвлечься, почитав любовный роман. И тут в очередной главе она сталкивается с такими же проблемами. Она словно видит себя, но под другим углом. И девушка уже понимает, как исправить ситуацию, потому что со стороны все оказалось намного проще.

Животные и птицы тоже могут передавать послания. Можно даже вспомнить приметы про ласточек и стрижей, которые, стучатся в окно или залетают в комнату. А бывает, что собака никак не хочет отпускать хозяина. Так и ластится, и тянет его обратно в комнату. Возможно, человек что-то забыл и она напоминает. Или пес чувствует, что надо немного задержаться. А вышел бы хозяин на пять минут раньше, его с головы до ног окатил бы водой из лужи проезжающий грузовик

А ведь у него сегодня деловая встреча, где важно презентабельно выглядеть

Итак, вселенная бесконечна, но что такое «Большой Взрыв»?

А 1922 г. советский математик Александр Александрович Фридман уточнил схему мира, нарисованную Эйнштейном. Он доказал, что замкнутая Вселенная Эйнштейна нестабильна. Она неизбежно должна расширяться: радиус конечной Вселенной должен расти, а вместе с ним будут увеличиваться и расстояния между космическими объектами. Расширяющееся пространство замкнутой Вселенной как бы разрежает находящееся внутри нее вещество. Иначе говоря, модель «расширяющейся Вселенной» была создана еще до того, как расширение всей известной системы галактик стало наблюдаемым фактом.

Но именно этот факт и оказался философски неприемлемым. В самом деле, если Вселенная — четырехмерный шар, то этот шар, вероятно, погружен в какое-то четырехмерное пространство. Но «четвертое измерение» долгое время ассоциировалось со всякой мистикой. Оно было излюбленной темой всевозможных спиритов, пытавшихся с помощью «четвертого измерения» объяснить разные «чудеса». Реальная же многовековая практика человечества совершалась и совершается в трехмерном пространстве. Отсюда и сложилось убеждение, что реально лишь пространство трех измерений, а многомерные пространства — не более чем удобная в ряде случаев математическая абстракция.

Психологически очень трудно было отказаться не только от бесконечной в евклидовом пространстве Вселенной, но и от ее вечности. Такую привычную для сознания вечность теория расширяющейся Вселенной явно не гарантировала. Если экстраполировать процесс расширения в прошлое, легко подсчитать, что около 10 млрд. лет назад радиус Вселенной был близок к нулю. Иначе говоря, «всего» 14 млрд. лет назад Вселенная представляла собой очень небольшой по объему, но зато сверхплотный сгусток вещества и энергии.

Надо заметить, что «возраст» Вселенной, т. е. промежуток времени от начала ее расширения до наших дней, по ряду причин определен не вполне точно. Возможно, этот возраст измеряется 18-20 миллиардами лет (оценка американского астронома Сэндиджа) или даже большим сроком

Важно другое: когда-то Вселенная была крошечной и сверхплотной

Внезапный (и по неизвестным причинам) взрыв, а точнее то, что называют «Большой Взрыв» этого сгустка и положил начало расширению Вселенной. Если же расширение Вселенной будет длиться вечно, миру грозит «растворение в ничто».

Все это казалось явно абсурдным, противоречащим материалистическим представлениям о мире. Не случайно буржуазные идеалисты тотчас ухватились за экстравагантную теорию расширяющейся Вселенной и объявили ее «первовзрыв» актом божественного творения мира.

С тех пор на протяжении трех десятилетий предпринимались попытки объяснить «красное смещение» каким-нибудь физическим процессом, не связанным с принципом Доплера, а значит, и с разбеганием галактик. Ныне большинство астрофизиков считают, что «красное смещение» в спектрах галактик — чисто доплеровский эффект, а следовательно, разбегание галактик — твердо установленный факт.

Строго говоря, в переводе с языка философии и науки на обычный, это звучало так – да, вселенная постоянно расширяется. И да, когда-то очень давно, она была значительно меньше, плотнее и (с сохранением всего того же, что и сейчас объема атомов, молекул, материи и энергии) сжата в непостижимо плотный с нашей точки зрения “клубочек”, который однажды был “развязан” неким не поддающимся осмыслению и описанию событием, которое мы называем “большой взрыв”.

Иллюстрация механизма «Большого Взрыва» – рождение «горячей» и «однородной» Вселенной, её постепенное остывание и формирование галактик и звезд

На ночном небе не останется звезд

Возможно, на небе когда-нибудь не останется ни одной звезды

Через 150 миллиардов лет ночное небо на Земле будет выглядеть совсем иначе. Пока Вселенная стремится к своей тепловой смерти, пространство расширяется быстрее скорости света. Мы знаем, что скорость света является жестким ограничителем скорости всех объектов во Вселенной. Но это применяется только к объектам, которые находятся в пространстве, а не самой ткани пространства-времени. Это трудно понять на лету, но ткань пространства-времени уже расширяется быстрее скорости света. И в будущем это повлечет за собой странные последствия.

Поскольку само пространство расширяется быстрее света, существует космологический горизонт. Любой объект, который уходит за этот горизонт, потребует от нас способности наблюдать и записывать данные о нем с помощью частиц, путешествующих быстрее света. Но таких частиц не существует. Как только объекты уходят за космологический горизонт, они становятся недоступными для нас. Любая попытка контакта или взаимодействия с далекими галактиками за этим горизонтом потребует от нас технологий, способных двигаться быстрее расширения самого пространства. Пока лишь несколько объектов находятся за пределами нашего космологического горизонта. Но поскольку темная энергия ускоряет расширение, все в конечном итоге окажется за пределами досягаемости наших глаз.

Что это означает для Земли? Представьте, что смотрите в ночное небо через 150 миллиардов лет. Единственное, что будет видно, это несколько звездочек, которые остались в пределах космологического горизонта. В конце концов, уйдут и они. Ночное небо будет полностью чистым, как табула раса. Астрономы будущего не смогут доказать, что во Вселенной есть какой-нибудь другой объект. Все звезды и галактики, которые мы видим сейчас, исчезнут. Для нас во всей Вселенной останется только Солнечная система. Правда, Земля вряд ли доживет до этого, но об этом ниже.

Формирование планет из линии жизни

www.scitechdaily.com

В многозвёздной системе под названием GG Tau-A в созвездии Тельца ALMA обнаружила газопылевой поток. Выходит поток из огромного внешнего диска вокруг всей звёздной системы, и тянется до меньшего внутреннего диска, окружающего только основную центральную звезду. Это похоже на колесо в колесе.

Учёные знали о существовании внутреннего диска ещё до ALMA, но не могли объяснить, как он уцелел. Центральная звезда должна притягивать материал, из которого состоит диск, так быстро, что диск давным-давно должен был исчезнуть. Но ALMA обнаружила никогда раньше не наблюдаемое явление: газовые скопления в области между двумя дисками, служащими своего рода «спасательным кругом» — внешний диск «кормит» материалом внутренний диск. Поэтому внутренний диск может просуществовать намного дольше, а значит, больше шансов, что из его материала сформируется планета.

Подобные «линии жизни» есть во многих звёздных системах — так «кормятся» протопланетные диски. Это значит, что в далёком будущем у нас будет больше мест для поиска экзопланет и инопланетной жизни.

Характеристика астероидов в Солнечной системе

Основные характеристики Гигеи:

  • Диаметр — 4 07 км.
  • Плотность — 2,56 г/см3.
  • Масса — 90.300.000.000.000.000.000 кг.
  • Ускорение силы тяжести — 0,15 м/с2.
  • Орбитальная скорость. Среднее значение — 16,75 км/с.

Основные характеристики Матильды таковы:

  1. Диаметр — почти 53 км.
  2. Плотность — 1,3 г/см3.
  3. Масса — 103.300.000.000.000.000 кг.
  4. Ускорение силы тяжести — 0,01 м/с2.
  5. Орбита. Матильда проходит полный оборот по орбите за 1572 земных суток.

Перечислим основные физические характеристики Весты:

  • Диаметр — 525 км.
  • Масса. Значение находится в пределах 260.000.000.000.000.000.000 кг.
  • Плотность — порядка 3,46 г/см3.
  • Ускорение свободного падения — 0,22 м/с2.
  • Орбитальная скорость. Показатель средней орбитальной скорости равен 19,35 км/с. Один оборот вокруг оси Веста проходит за 5,3 часа.

Что изучает наука астрономия

Астрономия (от греч. астро – звезда и номос – закон) – это наука о строении и развитии космических тел, систем, которые они образуют, и Вселенной вцелом.

Астрономия включает:

  • Сферическую астрономию – раздел астрономии, в котором разрабатывают математические методы решения задач, связанных с изучением видимого расположения и движения космических тел (звёзд, Солнца, Луны, планет, искусственных спутников Земли) на небесной сфере, в частности разрабатываются теоретические основы счёта времени;
  • Практическую астрономию – учение об астрономических инструментах и способах определения из астрономических наблюдений времени, географических координат и азимутов направлений, и этот раздел астрономии делится в свою очередь на геодезическую, мореходную и авиационную практическую астрономию;
  • Астрофизику – крупнейший раздел астрономии, изучающий всё многообразие физических явлению во Вселенной, в котором по объектам исследований выделяют физику Солнца, планет, межзвёздной среды и туманностей, звёзд, космологию, а по методам исследования выделяют астрофотометрию, астроспектрофотометрию, астрополяриметрию, астроколориметрию, радиоастрономию, рентгеновскую астрономию и гамма-астрономию;
  • Небесную механику – раздел астрономии, который изучает движение тел Солнечной системы в их общем гравитационном поле;
  • Звёздную астрономию – раздел астрономии, который исследует общие закономерности строения, состава, динамики и эволюции звёздных систем (скоплений и галактик), и который включает звёздную статистику, звёздную кинематику и звёздную динамику;
  • Внегалактическую астрономию – раздел астрономии, в котором изучаются космические тела (звёзды, галактики, квазары), находящиеся за пределами нашей звёздной системы – Галактики;
  • Космогонию – раздел астрономии, изучающий происхождение (зарождение) космических тел и их систем (планет и Солнечной системы в целом, звёзд, галактик);
  • Космологию – физическое учение о Вселенной как целом, основанное на результатах исследований той части Вселенной, которая доступна для астрономических наблюдений.

Гало

Гало, а простыми словами сферическая форма, которая окутывает диск Млечного пути. Она состоит в основном из звезд и скоплений, которым уже много тысяч лет.

Учеными было выявлено предположение, что Гало образовалось 12 миллиардов лет назад. Данные выводы сделаны после исследований нескольких весьма старых объектов.

К слову, все объекты в гало вращаются по орбитам. Происходит это за счет влияния диска на гало. Гало считается полностью сформированной структурой. Здесь не появляются новых звезд, ведь нет и предпосылок для них. И если в диске имеются пыль, газы, из которых образовываются новые звезды, то в гало этого нет.

Ученые ищут доказательства существования внеземной жизни на Земле

Поиск внеземного разума – это проект, направленный на то, чтобы выяснить, существует ли разумная жизнь в других частях Вселенной, и если да, то как мы можем контактировать с внеземными видами. Проект включает в себя поиск жизни на других планетах и спутниках. Например, некоторые спутники Юпитера (такие как Ио) являются многообещающими местами для поиска свидетельств примитивной жизни. Удивительно, но, в том числе, поиск внеземной жизни включает в себя научные исследования и на Земле.

Если ученые смогут опровергнуть доказательства того, что жизнь возникла независимо более одного раза, это будет означать, что она (жизнь) способна зарождаться более одного раза и в различных местах. По этой причине ученые ищут доказательства того, что жизнь могла зарождаться на Земле не единожды, понимание чего может открыть интригующие перспективы для дальнейшего изучения Вселенной и нас самих.

Темная материя удерживает все вместе

 Nasa Goddard / YouTube

Поскольку темная материя обладает огромным гравитационным эффектом, она влияет буквально на все во Вселенной. Созданная ей гравитация заставляет все содержимое космоса соединяться и образовывать галактики. Эти галактики, в свою очередь, собираются вместе с другими галактиками, образуя галактические скопления. А после того как они формируются и начинают вращаться, именно темная материя удерживает их, чтобы они не вылетели в открытое космическое пространство.

Представьте, что к веревке прикреплен теннисный мяч и вы вращаете его над головой. Мяч – это галактика, а вы – гравитация. Если бы теннисный мяч был шаром для боулинга, ваша гравитация не помешала бы ему порвать веревку и улететь в космос. Темная материя – это то, что делает эту веревку достаточно прочной, чтобы удерживать предметы на своих местах.

Все нуклоны распадутся

Распадется ли в конце концов протон?

Перемотаем с точки в 1015 лет после Большого Взрыва до точки в 1034 лет. Если человеческая раса к тому моменту не будет мертва, эту-то эпоху мы уж точно не переживем. Как уже было сказано выше, астрономы постоянно спорят о том, распадется ли протон к концу времен. Допустим, да.

Нуклоны — это частицы в ядре атома, протоны и нейтроны. Свободные нейтроны, как известно, распадаются с периодом полураспада в 10 минут. Но протоны невероятно стабильные. Никто не видел воочию распада протона. Но ближе к концу Вселенной все изменится.

Физики предполагают, что период полураспада протона составляет 1037 лет. Мы не наблюдали этого распада, поскольку Вселенная еще недостаточно стара. В эпоху распада (1034 – 1040 лет) протоны наконец начнут распадаться на позитроны и пионы. К концу эпохи распада все протоны и нейтроны во Вселенной закончатся.

Очевидно, у жизни во Вселенной начнутся проблемы. Если предположить, что человеческая раса пережила изменение Солнца и мигрировала в более дружелюбные части Вселенной, в определенный момент уже законы физики начнут диктовать смерть человеческой расы. Наши тела и все межзвездные объекты состоят из нуклонов. Когда они распадутся, любая жизнь закончится, поскольку сами атомы прекратят существование. Жизнь не сможет продолжить существование в таких условиях (и в такой форме) и Вселенная погрузится в эпоху черных дыр.

Темная материя

Геометрия Вселенной связана с плотностью ее вещества: если она больше определенного значения (5,5 атома водорода на кубический метр. — Прим. T&P), Вселенная закрытая, если меньше — открытая, а если равна — плоская. Соответственно, если Ω — отношение плотности Вселенной и критической плотности — больше единицы, то Вселенная закрытая, если меньше — открытая, а если равна — плоская.

В 1936 году Альберт Эйнштейн опубликовал в журнале Science статью («Линзоподобное действие звезды при отклонении света в гравитационном поле». — Прим. T&P), в которой писал, что раз пространство искривляется из-за гравитации и есть такие тяжелые объекты, как звезды, то свет, находящийся за звездой, обходит мешающие ему объекты, а пространство может выступать в роли линзы

Он пришел к этим выводам еще в 1914 году, но забыл о них, потому что считал, что это не так важно. На самом деле феномен гравитационной линзы, конечно, крайне важен

Вследствие явления, описанного Эйнштейном, мы можем видеть на изображении выше не только отдельные галактики и их скопления, но и множественные изображения одной и той же галактики. Свет от этой галактики прошел через другую галактику, попал в гравитационную линзу и был искажен.

Мы также можем подсчитать массу галактики, которая так сильно исказила свет. Эту сложную задачу, математическую инверсию, ученые решили в конце 1990-х годов. Они получили диаграмму распределения масс, на которой галактики обозначены пиками, — но присутствуют также пики там, где галактик вроде бы не видно. Это невидимая материя, которой в 40 раз больше, чем видимой, а раз она невидима и не сияет, то ее назвали темной. Оказалось, что в галактиках гораздо больше темной материи, чем материи самих галактик.

Темная материя состоит не из обычных протонов и нейтронов, а из других элементарных частиц. Она везде, а раз так, мы можем провести эксперимент здесь, на Земле, чтобы ее найти. Можно попробовать зафиксировать взаимодействие какой-нибудь массивной темной частицы с обычной частицей. Этому мешает естественный радиационный фон, поэтому такие эксперименты проводятся глубоко под землей. В качестве мишеней используются кристаллы кремния или германия, охлажденные до 0,001°C. Такие детекторы расположены в разных частях земного шара, но пока что они не зафиксировали ничего, что можно было бы однозначно трактовать как темную материю. Можно еще попробовать создать темную материю в лабораторных условиях — для этого у нас есть Большой адронный коллайдер. Но сейчас для нас важнее не из чего состоит темная материя, а сколько она весит — коль скоро она составляет бóльшую часть массы Вселенной.

Глядя на диаграмму выше, мы можем подсчитать общую массу, массу видимых галактик и массу темной материи. Однако все обнаруженные учеными массы составляют только 30% массы, необходимой, чтобы Вселенная была плоской. Можно было бы сделать вывод, что наша Вселенная открытая и будет расширяться бесконечно. Но здесь есть подвох: все эти подсчеты касаются только галактик и их скоплений. А то, что находится между ними, мы взвесить не можем. Так что нам нужен какой-нибудь другой объект для измерения.

С чего все началось и могло ли быть иначе?

Вселенная начала расширяться сразу после Большого взрыва. Скорость расширения на раннем этапе ее эволюции — этот процесс называется космологической инфляцией — была значительно больше, чем после окончания инфляции. Так, постепенно Вселенная расширялась и охлаждалась, но лишь с долей начальной скорости. В течение следующих 380 000 лет Вселенная была настолько плотной, что космос представлял собой непрозрачную, сверхгорячую плазму рассеянных частиц. Когда Вселенная охладилась достаточно для того, чтобы образовались первые атомы водорода, она стала прозрачной для прохождения света. Затем излучение вспыхнуло во всех направлениях и Вселенная была на пути к тому, чтобы стать такой, какой мы видим ее сегодня — пустое пространство, которое чередуется со сгустками газа и пыли, звезд, галактик, черных дыр и других форм материи и энергии. В конце концов, согласно некоторым моделям, все сгустки вещества разойдутся так далеко друг от друга, что постепенно исчезнут. Вселенная станет холодным однородным супом из изолированных фотонов. Но что, если Большой Взрыв не был началом всего этого?

Теория Большого взрыва настолько общепринята, что иногда можно забыть о том, что это лишь теория, в которой есть недостатки. Именно по этой причине ученые предлагают самые разные варианты развития событий. Так, выдвигались предположения о том, что Большой взрыв, возможно, был скорее «Большим отскоком» — неким поворотным моментом в продолжающемся цикле сокращения и расширения Вселенной. Еще одно предположение гласит, что Большой взрыв стал точкой отражения, когда зеркальное отображение нашей Вселенной расширяется за «другую сторону», в которой антивещество заменяет материю, а само время течет в обратном направлении. Согласно третьему предположению Большой взрыв — это точка перехода во Вселенной, которая существовала всегда и продолжит расширяться бесконечно. Все эти теории находятся за пределами основной космологии, но все они нашли поддержку среди уважаемых ученых. Растущее количество новых, конкурирующих друг с другом теорий, говорит о том, что, возможно, пришла пора пересмотреть сам факт того, что Большой взрыв знаменует собой начало пространства и времени.

Вселенная, которую мы в настоящее время видим, состоит из скоплений газа и пыли, звезд, черных дыр и галактик

Космическая пыль

Откуда же берется космическая пыль? Наша планета окружена плотной воздушной оболочкой – атмосферой. В состав атмосферы, кроме известных всем газов, входят ещё и твёрдые частички – пыль.

Пыль земного происхождения

Вулканическая пыль

В основном она состоит из частиц почвы, поднимающихся вверх под действием ветра. При извержении вулканов часто наблюдаются мощные пылевые облака. Над большими городами висят целые «пылевые шапки», достигающие высоты в 2-3 км. Число пылинок в одном куб.

см воздуха в городах достигает 100 тысяч штук, в то время как в чистом горном воздухе их содержится всего несколько сотен.  Однако пыль земного происхождения поднимается на сравнительно небольшие высоты – до 10 км.

Вулканическая пыль может достигать высоты 40-50 км.

Происхождение космической пыли

Установлено присутствие пылевых облаков на высоте, значительно превышающей 100 км. Это так называемые «серебристые облака», состоящие из космической пыли.

Серебристые облака

Происхождение космической пыли чрезвычайно разнообразно: в неё входят и остатки распавшихся комет, и частицы вещества, выброшенного Солнцем и принесённого к нам силой светового давления.

Естественно, что под действием земного притяжения значительная часть этих космических пылинок медленно оседает на землю. Присутствие такой космической пыли было обнаружено на высоких снеговых вершинах.

Метеориты

Тунгусский метеорит

Кроме такой, медленно оседающей космической пыли, в пределы нашей атмосферы ежедневно врываются сотни миллионов метеоров – то, что мы называем «падающими звёздами». Летя с космической скоростью в сотни километров в секунду, они сгорают от трения о частицы воздуха, не успев долететь до поверхности земли. Продукты их сгорания тоже оседают на землю.

Впрочем, среди метеоров есть и исключительно большие экземпляры, долетающие до поверхности земли.

Так, известно падение большого Тунгусского метеорита в 5 часов утра 30 июня 1908 года, сопровождавшееся рядом сейсмических явлений, отмеченных даже в Вашингтоне (в 9 тысячах км от места падения) и свидетельствующих о мощности взрыва при падении метеорита.

Сотрудник Британского музея Кирпатрик в 1932 году совершил специальную поездку в СССР, но к месту падения метеорита даже не добрался. Впрочем, он подтвердил предположение профессора Кулика, оценившего массу упавшего метеорита в 100-120 тонн.

Облако космической пыли

Интересна гипотеза академика В. И. Вернадского, считавшего возможным падение не метеорита, а огромного облака космической пыли, шедшего с колоссальной скоростью.

Владимир Иванович Вернадский

Свою гипотезу академик Вернадский подтверждал появлением в эти дни большого количества светящихся облаков, двигавшихся на большой высоте со скоростью 300-350 км в час. Этой гипотезой можно было бы объяснить и то, что деревья, окружающие метеоритный кратер, остались стоять, в то время как расположенные далее были повалены взрывной волной.

Помимо Тунгусского метеорита известен ещё целый ряд кратеров метеоритного происхождения. Первым из таких обследованных кратеров можно назвать Аризонский кратер в «Каньоне Дьявола».

Кроме указанных кратеров, свидетельствующих о падении огромных метеоритов весом в десятки тонн, существуют ещё и более мелкие кратеры: в Австралии, на острове Эзель и ряд других.

Помимо больших метеоритов, ежегодно выпадает довольно много более мелких – весом от 10-12 грамм до 2-3 килограмм.

Если бы Земля не была защищена плотной атмосферой, мы ежесекундно подвергались бы бомбардировке мельчайших космических частиц, несущихся со скоростью, превосходящей скорость пули.

by HyperComments

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Росспектр
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: