Применение магнитов

Введение

Подковообразный магнит

Рисунок линий силового поля магнита, полученный с помощью железной стружки

Магнит — тело, обладающее собственным магнитным полем. Слово происходит от др.-греч. Μαγνῆτις λίθος (Magnētis líthos), «камень из Магнесии» — от названия региона Магнисия и древнего города Магнесия в Малой Азии, где в древности были открыты залежи магнетита.

Простейшим и самым маленьким магнитом можно считать электрон. Магнитные свойства всех остальных магнитов обусловлены магнитными моментами электронов внутри них. С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозоном — фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля).

Постоянный магнит — изделие, изготовленное из ферромагнетика, способного сохранять остаточную намагниченность после выключения внешнего магнитного поля. Постоянные магниты применяются в качестве автономных (не потребляющих энергии) источников магнитного поля. Свойства магнита определяются характеристиками размагничивающего участка петли магнитного гистерезиса материала магнита: чем выше остаточная индукция Br и коэрцитивная сила Hc, тем выше намагниченность и стабильность магнита. Характерные поля постоянных магнитов — до 1 Тл (10 кг·с).

Электромагнит — устройство, магнитное поле которого создаётся только при протекании электрического тока. Как правило, это катушка-соленоид, со вставленным внутрь железным сердечником с большой магнитной проницаемостью . Характерные поля электромагнитов 1,5-2 Тл определяются т. н. насыщением железа, то есть резким спадом дифференциальной магнитной проницаемости при больших значениях магнитного поля.

Вопросы и задачи

  1. Может ли стальной стержень иметь на обоих концах одинаковые магнитные полюса? Может ли постоянный магнит иметь четное число магнитных полюсов? А нечетное число?
  2. Два одинаковых прямолинейных магнита соединили одни раз так, как показано на рисунке а), другой раз — как показано на рисунке б). Изобразите линии индукции магнитного поля в каждом случае.
  3. Будет ли действовать магнит на магнитную стрелку, если между ними поместить руку? А если алюминиевый лист?
  4. На лист бумаги равномерно насыпают металлические опилки. Этот лист помещают в магнитное поле. Если слегка постукивать по листу, то опилки расположатся в цепочки по направлению магнитных линий. Для чего необходимо постукивать по листу? Почему опилки выстраиваются в цепочки?
  5. Имеются два одинаковых стальных стержня, один из которых намагничен сильнее другого. Как найти этот стержень?
  6. Полосовой магнит распилили на несколько кусков одинаковой длины. Какой из получившихся кусков окажется намагниченным сильнее: который находился ближе к концам или ближе к середине магнита?
  7. Полосовой магнит разделили на две равные части и получили два магнита. Будут ли эти магниты оказывать такое же действие, как и целый магнит?
  8. Зачем при хранении дугообразного магнита его концы соединяют железным бруском (якорем)?
  9. Сильный дугообразный магнит способен удерживать стальной шарик. Почему шарик не удерживается на прежнем месте, если магнит замкнуть якорем?
  10. Сильный магнит может удерживать на весу гирлянду из нескольких железных цилиндров. Что будет происходить, если снизу приближать к гирлянде такой же магнит, обращенный к верхнему одноименным полюсом? А если противоположным?
  11. Три совершенно одинаковые магнитные стрелки расположены в вершинах равностороннего треугольника, сторона которого много больше длины стрелки. Стрелки могут вращаться вокруг осей, перпендикулярных плоскости треугольника. Каково положение равновесия стрелок, если всеми влияниями, а также магнитным полем Земли можно пренебречь?
  12. Почему ударами молотка можно размагнитить стальной магнит, а легким постукиванием по стальному стержню можно, наоборот, способствовать его намагничиванию?
  13. Отчего обыкновенные магнитные компасы вблизи полюсов Земли работают очень плохо?
  14. Уравновешенные весы со стальным коромыслом располагаются вдоль земного меридиана. Сохранится ли равновесие, если коромысло намагнитить вдоль всей его длины?
  15. Можно ли на Луне ориентироваться с помощью магнитного компаса?
  16. Многие вещества сохраняют свои магнитные свойства и после испарения. А почему атомы железа в парообразном состоянии теряют ферромагнитные свойства?
  17. Намагниченная стальная пластинка, опущенная в сосуд с соляной кислотой, растворилась. Куда девалась магнитная энергия пластинки?

Примечания

  1. Статья о полях. (2010) http://wiseinit.blogspot.com/2010/01/magnet.html — wiseinit.blogspot.com/2010/01/magnet.html
  2. Schenck JF (2000). «Safety of strong, static magnetic fields». J Magn Reson Imaging 12 (1): 2–19. DOI:<2::AID-JMRI2>3.0.CO;2-V 10.1002/1522-2586(200007)12:1<2::AID-JMRI2>3.0.CO;2-V — dx.doi.org/10.1002/1522-2586(200007)12:1. PMID 10931560 — www.ncbi.nlm.nih.gov/pubmed/10931560?dopt=Abstract.
  3. Oestreich AE (2008). «Worldwide survey of damage from swallowing multiple magnets». Pediatr Radiol 39: 142. DOI:10.1007/s00247-008-1059-7 — dx.doi.org/10.1007/s00247-008-1059-7. PMID 19020871 — www.ncbi.nlm.nih.gov/pubmed/19020871?dopt=Abstract.

Мир в магнитном кольце

И вот, сидя в купе, он вертел в руках обычный металлический шарик от подшипника и ферритовое кольцо – детали отвергнутого изобретения. После очередного толчка поезда шарик закатился в кольцо, да и остался в нем. Михаил Федорович собирался уж было вынуть шарик, но вдруг ощутил, как надежно тот обосновался внутри. При его выталкивании в ту или иную сторону ощущалось противодействие, возвращающее шарик обратно.

Вроде бы все понятно: ферритовое кольцо – магнит, притягивающий металл. Остриков машинально представил себе общепринятую картину силовых линий кольцевого магнита и с этого момента лишился покоя.

Действительно, а какова картина магнитных силовых линий ферритового кольца с прямоугольным поперечным сечением, если одна его сторона представляет собой северный полюс, а другая – южный? Оказывается, в учебниках и справочной литературе по магнетизму она не приводится. Специалисты, к которым Остриков обращался со своим «наивным» вопросом, обычно отвечали «Все очень просто Структура линий будет примерно такой же, как у кольцевого проводника с постоянным током». – «Но тогда, – говорил Михаил Федорович, – непонятно, почему шарик так прочно обосновывается внутри кольца, попадая будто в мешок».

Наконец, он поставил простой опыт. Повернул ферритовое кольцо на ребро, продел сквозь картонку и насыпал на нее мелких металлических опилок. Встряхнул, чтобы они распределились в соответствии с магнитным полем, и увидел, что все происходит далеко не так. В области, прилегающей к отверстию кольца, с линиями происходило что-то непонятное. Вместо того чтобы непрерывно пронизывать его, они расходились, очерчивая фигуру, напоминающую туго набитый мешок Он имел как бы две завязки – вверху и внизу (особые точки 1 и 2 на рис. 1) Эта область, по сути, и есть открытие Острикова. Он назвал ее магнитным балджем (bulging – англ. выпуклый, выпяченный).

Рис. 1. Структура магнитных силовых линий ферритового кольца(представлено в разрезе)

Оказалось, что в точках 1 и 2 происходят «чудеса» – магнитное поле в них меняет направление. Одно из доказательств этого Михаил Федорович продемонстрировал прямо в редакции.

Рис. 2. а – гайка примагнитилась к поверхности шара, лежащей ниже второй особой точки; б – гайка отваливается от поверхности шара попавшей в окрестность особой точки; в – гайка вновь примагнитилась к шару над особой точкой

Он поднес снизу к ферритовому кольцу стальной шарик, а к его нижней части металлическую гайку. Она тут же притянулась к нему (рис. 2а). Здесь все понятно – шарик, попав в магнитное поле кольца, стал магнитом. Далее исследователь стал вносить шарик снизу вверх в кольцо. И вдруг – гайка отвалилась и упала на стол (рис. 2б). Вот она, нижняя особая точка! В ней изменилось направление поля, шарик стал перемагничиваться и оттолкнул от себя гайку. Подняв шарик выше особой точки, гайку вновь можно примагнитить к нему (рис. 2в).

У Острикова поставлен с десяток опытов, подтверждающих наличие магнитного балджа. А что проку в нем? – возникает естественный вопрос.

Остриков зажал как-то ферритовое кольцо в патрон токарного станка и поместил в магнитный балдж три маленьких металлических шарика. Когда патрон завращался, они отделились от внутренней части кольца (к которой прилеплялись в покое) и закружились каждый по своей орбите, не вываливаясь из магнитной ловушки. Михаил Федорович не спешит с прогнозами, но и не отвергает того, что балдж может оказаться идеальной «посудиной» для высокотемпературной плазмы. А ее, как известно, ученые уже не одно десятилетие пытаются удержать в устройствах типа Токамак, дабы осуществить термоядерный синтез.

Зная о балдже, можно создать и более прозаические конструкции – бесконтактные подшипники, центрифуги, амортизаторы и многое другое.

Но самым глобальным следствием обнаруженного явления может оказаться пересмотр модели мироздания. Кружащие по своим орбитам шарики натолкнули Острикова на мысль, что и наша Земля движется под действием магнитных сил внутри вращающегося звездного кольца – Млечного Пути. Кто знает, возможно, открыв магнитную картину Вселенной, мы создадим новые способы перемещения в ней, и тогда балдж будет преподаваться в школьном курсе физики заодно с конструкцией МЛО – магнитных летающих объектов?

Ранее опубликовано:«Техника – молодежи», №6, 1991 г

Авторские права на базу данных принадлежат 2006www.skif.biz

Разновидности магнитов

Постоянный магнит – объект, созданный из намагниченного вещества, которое формирует собственное магнитное поле. В качестве примера можно привести обыкновенный магнитик на холодильник. Есть разные виды магнитов. Материалы, поддающиеся намагничиванию или легко притягивающиеся, именуют ферромагнитными.

Существует также электромагнит, который намагничивается только в том случае, если сквозь него пустить электрический ток.

Этот магнит напоминает подкову и создан из альнико (железный сплав). Форма позволяет ему прижать два магнитных полюса, чтобы сформировать сильное магнитное поле, способное удержать тяжелые железные обломки

Как появляется магнитное поле Земли

До конца ещё неизвестно правда это или нет, но учёные считают, что магнитное поле генерируется глубоко в ядре Земли.

По словам учёных, прямо в центре Земли есть твёрдое внутреннее ядро, которое состоит в основном из железа. Это железо имеет температуру в 5700° С, но сокрушительное давление (вызванное силой тяжести) не даёт ему превратиться в жидкость.

Вокруг него находится внешнее ядро — слой железа, никеля и других металлов. У него более низкое давление, чем у внутреннего ядра, т. е. металл здесь жидкий.

Существуют различия между этими двумя слоями (в температуре, давлении, составе). Таким образом, во внешнем ядре происходят конвекционные токи (перемещение электрических зарядов) в жидком металле. Тёплое и обладающее меньшей плотностью вещество поднимается, и наоборот — более холодное и плотное погружается вниз.

Потом заряженные металлы проходят через созданные поля и продолжают создавать уже собственные электрические токи, и этот бесконечный цикл продолжается. Этот цикл называется геодинамо.

Из чего состоит магнитное поле Земли

Геомагнитное поле состоит из:

  • главного геомагнитного поля (производится во внешнем ядре Земли);
  • аномального геомагнитного поля (производится намагниченными горными породами);
  • внешнего геомагнитного поля (производится взаимодействиями между Солнцем и Землёй).

Где используют постоянные магниты

Замечательные свойства постоянных магнитов используются в различных областях науки, техники, на производствах, в повседневной жизнедеятельности. Вот только некоторые из них:

  • Запись и хранение информации (магнитные ленты, компьютерные дискеты и диски);
  • Пластиковые карты различного назначения (финансовые, бонусные, контрольно-пропускные);
  • Микрофоны, громкоговорители, звуковая техника;
  • Электродвигатели, генераторы, трансформаторы;
  • Компасы;
  • В измерительных приборах с отклоняющей стрелкой, например, в амперметрах;
  • Пластиковые магниты для использования в учебных выставочных целях;
  • Магниты на холодильник;
  • Изготовление застежек для одежды и сумок:
  • Мебельные фиксаторы (закрывание дверок);
  • Детские игрушки.

Рис. 3. Области применение постоянных магнитов/p>

Пальму первенства среди самых мощных искусственных магнитов на сегодняшний день удерживают магниты, в состав которых включены редкоземельные металлы: неодим (сплав Nd-Fe-B) или самарий (сплав Sm-Co). Эти магниты могут сохранять свои свойства, не размагничиваясь в течение 30 лет.

Магнит в Средние века

Использовать магнит как указатель сторон света догадались в Китае, но никто не проводил теоретических исследований на эту тему.

А вот научные труды европейских средневековых учёных не обошли магнит стороной. В 1260 году Марко Поло привёз магнит из Китая в Европу – и понеслось. Пётр Перегрин в 1296 году издал «Книгу о магните», где было описано такое свойство магнита, как полярность. Пётр установил, что полюса магнита могут притягиваться и отталкиваться.

В 1300 году Иоанн Жира создал первый компас, облегчив жизнь путешественникам и мореплавателям. Впрочем за честь считаться изобретателям компаса борется несколько учёных. Например, итальянцы свято уверены, что первым изобрёл компас их соотечественник Флавио Джойя.

В 1600 труд «О магните, магнитных телах и о большом магните – Земле. Новая физиология, доказанная множеством аргументов и опытов» английского врача Уильяма Гильберта расширил границы знаний об этом предмете. Стало известно, что нагревание способно ослабить магнит, а железная арматура может усилить полюса. Так же оказалось, что сама Земля является огромным магнитом.

В 1701 астроном Э.Галлей опубликовал свои труды по изучению геомагнитных полей. Вскоре была доказана связь между полярным сиянием и магнитными бурями.

Кстати, любопытно, откуда взялось название «магнитная буря». Оказывается, бывают дни, когда стрелка компаса перестаёт указывать на север, а начинает беспорядочно кружиться. Это может продолжаться несколько часов или даже несколько суток. Поскольку первыми данный феномен обнаружили моряки, то и окрестили явление красиво – магнитной бурей.

Древнекитайский компас

Памятник Флавио Джойя в Амальфи

Титульный лист De Magnete, Magneticisque Corporibus, et de magno magnete tellure; Physiogia nova, plurimis et arguementis et experimentis demonstrata, William Gilbert 1600

2. Магнитные материалы

.

Термин магнит, как правило, используется для объектов, которые имеют свое собственное магнитное поле, даже в отсутствие приложенного магнитного поля. Такое возможно лишь в некоторых классах материалов. В большинстве материалов магнитное поле появляется в связи с приложенным внешним магнитным полем; это явление известно как магнетизм. Есть несколько типов магнетизма, и все материалы имеют по крайней мере один из них.

В целом поведение магнитного материала, может значительно варьироваться, в зависимости от структуры материала и, в частности, от его электронной конфигурации. Существует несколько типов взаимодействия материалов с магнитным полем, в том числе:

  • Ферромагнетики и ферримагнетики: материалы которые, обычно, и считаются ‘магнитными’; они притягиваются к магниту достаточно сильно, так что притяжение ощущается. Только эти материалы могут сохранять намагниченность и стать постоянными магнитами. Ферримагнитные материалы, сходны, но слабее, чем ферромагнетики. Различие между ферро- и ферримагнитными материалами, связаны с их микроскопической структурой.
  • Парамагнетики: вещества, такие, как платина, алюминий, и кислород которые слабо притягиваются к магниту. Этот эффект в сотни тысяч раз слабее, чем притяжение ферромагнитных материалов, поэтому оно может быть обнаружено только с помощью чувствительных инструментов, либо с помощью очень сильных магнитов.
  • Диамагнетики: вещества, намагничивающиеся против направления внешнего магнитного поля. По сравнению с парамагнитными и ферромагнитными веществами, диамагнитные вещества, такие как углерод, медь, вода и пластики ещё слабее отталкиваются от магнита. Проницаемость диамагнитных материалов меньше проницаемости вакуума. Все вещества, не обладающие одним из других типов магнетизма, являются диамагнитными; к ним относится большинство веществ. Силы, действующие на диамагнитные объекты от обычного магнита, слишком слабы. Однако в сильных магнитных полях сверхпроводящих магнитов диамагнитные материалы, например, кусочки свинца, могут парить. Ну а поскольку углерод и вода являются веществами диамагнитными, то в мощном магнитном поле могут парить даже и органические объекты. Например, живые лягушки.

Существуют другие виды магнетизма, например, спиновые стёкла, суперпарамагнетизм, супердиамагнетизм и метамагнетизм.

1. История открытия

Старинная легенда рассказывает о пастухе по имени Магнус. Он обнаружил однажды, что железный наконечник его палки и гвозди сапог притягиваются к черному камню. Этот камень стали называть «камнем Магнуса» или просто «магнитом», по названию местности, где добывали железную руду (холмы Магнезии в Малой Азии). Таким образом, за много веков до нашей эры было известно, что некоторые каменные породы обладают свойством притягивать куски железа. Об этом упоминал в 6 в. до н. э. греческий физик и философ Фалес. Первое научное изучение свойств магнита было предпринято в 13 веке ученым Петром Перегрином. В 1269 г. вышло его сочинение «Книга о магните», где он писал о многих фактах магнетизма: у магнита есть два полюса, которые ученый назвал северным и южным; невозможно отделить полюса друг от друга размалыванием. Перегрин писал и о двух видах взаимодействия полюсов — притяжении и отталкивании.

В 1600 г. вышло сочинение английского врача В. Гильберта «О магните». К известным уже фактам Гильберт прибавил важные наблюдения: усиление действия магнитных полюсов железной арматурой, потерю магнетизма при нагревании и другие. В 1820 г. датский физик Ганс Христиан Эрстед на лекции попытался продемонстрировать своим студентам отсутствие связи между электричеством и магнетизмом, включив электрический ток вблизи магнитной стрелки. По словам одного из его слушателей, он был буквально «ошарашен», увидев, что магнитная стрелка после включения тока начала совершать колебания. Большой заслугой Эрстеда является то, что он оценил значения своего наблюдения и повторил опыт. Соединив длинным проводом полюса гальванической батареи, Эрстед протянул провод горизонтально и параллельно свободно подвешенной магнитной стрелке. Как только был включен ток, стрелка немедленно отклонилась, стремясь встать перпендикулярно к направлению провода. При изменении направления тока стрелка отклонилась в другую сторону. Вскоре Эрстед доказал, что магнит действует с некоторой силой на провод, по которому идет ток.

Открытие взаимодействия между электрическим током и магнитом имело огромное значение. Оно стало началом новой эпохи в учении об электричестве и магнетизме. Это взаимодействие сыграло важную роль в развитии техники физического эксперимента.

Узнав об открытии Эрстеда, французский физик Доминик Франсуа Араго начал серию опытов. Он обмотал медной проволокой стеклянную трубку, в которую вставил железный стержень. Как только замкнули электрическую цепь, стержень сильно намагнитился и к его концу крепко прилипли железные ключи; когда выключили ток, ключи отпали. Араго рассматривал проводник, по которому идет ток, как магнит. Правильное объяснение этого явления было дано после исследования французского физика Андре Ампера, который установил внутреннюю связь между электричеством и магнетизмом. В сентябре 1820 г. он сообщил Французской Академии наук о полученных им результатах.

Затем Ампер в своем «станке» заменил раму свободно подвешенным спиральным проводником. Этот провод при пропускании по нему тока приобретал свойство магнита. Ампер назвал его соленоидом. Исходя из магнитных свойств соленоида, Ампер предложил рассматривать магнетизм как явление, обязанное круговым токам. Он считал, что магнит состоит из молекул, в которых имеются круговые токи. Каждая молекула представляет собой маленький магнитик, располагаясь одноименными полюсами в одну и ту же сторону, эти маленькие магнитики и образуют магнит. Проводя вдоль стальной полосы магнитом (несколько раз в одну и ту же сторону), мы заставляем молекулы с круговыми токами ориентироваться в пространстве одинаково. Таким образом стальная пластинка превратится в магнит. Теперь стал понятен и опыт Араго со стеклянной трубкой, обмотанной медным проводом. Вдвинутый в нее железный стержень стал магнитом потому, что вокруг него шел ток. Это был электромагнит.

В 1825 г. английский инженер Вильям Стерджен изготовил первый электромагнит, представляющий собой согнутый стержень из мягкого железа с обмоткой из толстой медной проволоки. Для изолирования от обмотки стержень был покрыт лаком. При пропускании тока железный стержень приобретал свойства сильного магнита, но при прерывании тока он мгновенно их терял. Именно эта особенность электромагнитов позволила широко применять их в технике.

Магнит может быть полезен и в быту

Порадуйте свою супругу таким вот настенным щитом, который позволит ей очень удобно хранить свою косметику, не загромождая при этом другие необходимые для дел поверхности.

Однако создавать огромный щит вовсе не обязательно. Небольшие магнитики можно разместить там, где это удобно, чтобы с их помощью обеспечить хранение необходимых вещей или инструментов.

Магнитная полоска может стать надежным хранилищем для постоянно исчезающих заколок, пинцетов и щипчиков для ногтей.

Аналогичное приспособление можно подвесить и в ванной.

А вот так вы сможете порадовать своего малыша, для которого уборка игрушек может превратиться в настоящее удовольствие.

Часто в холодильнике хранятся вкусные прохладные напитки. А почему бы таким вот образом не держать наготове стаканчики, чтобы быстренько насладиться их вкусом?

Штекер не будет никуда заваливаться, если хранить его вот таким образом, используя наклеенный на него магнит.

Настенные магнитные хранилища можно обустроить и на кухне. Так необходимые приправы или специи всегда будут под рукой, не загромождая при этом кухонные рабочие поверхности.

Итак, благодаря приведенным нами примерам, вы заметили, что магнит на холодильник – это далеко не единственное возможное использование магнитов в быту. Мы понимаем, что не все перечисленные варианты обладают большой привлекательностью и утилитарностью. Однако мы намеренно перечислили все, что нам удалось найти в интернете, чтобы заставить вашу фантазию работать и отыскать именно то применение магнитов, которое для вас представляет наибольший интерес.

Постоянные магниты

На предыдущем уроке мы познакомились с электромагнитами, которые приобретают магнитные свойства лишь при включении тока. Но в природе существуют вещества, которые длительное время могут сохранять намагниченность.

ПОСТОЯННЫЕ МАГНИТЫ

В природе существуют лишь три металла — кобальт, железо и никель — которые остаются намагниченными, если находящийся рядом с ними магнит убирают. Тела, длительное время сохраняющие намагниченность, называют постоянными магнитами или магнитами.

К магниту прилипают гвозди, канцелярские скрепки и другие предметы из железа, никеля и стали. Любой кусок железа или стали становится магнитом, если по нему несколько раз провести в одном направлении концом постоянного магнита.

В первой половине XIX в., сразу после открытия Эрстедом действия тока на магнитную стрелку, Ампер исследовал магнитные взаимодействия и сделал вывод, что «все магнитные явления сводятся к чисто электрическим эффектам». Согласно гипотезе Ампера, в любом магните присутствует множество круговых электрических токов, действием которых и объясняются магнитные силы. Интересно, что, выдвигая свою гипотезу, Ампер ещё не знал ни о строении атома, ни о существовании электронов. Современная теория магнетизма подтвердила правильность предположения Ампера.

Движение электронов внутри атомов или молекул создаёт токи, которые называют элементарными кольцевыми токами. В магнитах эти токи ориентированы одинаково, поэтому магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковое направление. Они усиливают друг друга, создавая поле вокруг и внутри магнита.

СЕВЕРНЫЙ И ЮЖНЫЙ ПОЛЮС МАГНИТА

Положим магнит в коробочку с мелкими железными опилками. Если мы достанем магнит, то увидим, что опилки прилипают не ко всей поверхности магнита, а лишь к некоторым его частям.

Те места магнита, которые оказывают наиболее сильное магнитное действие, называют полюсами магнита. У каждого магнита обязательно есть два полюса: северный (N) и южный (S). Красным цветом окрашивают южный полюс магнита, синим — северный.

Получить магнит с одним полюсом невозможно. Если магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.

ВЗАИМОДЕЙСТВИЕ МАГНИТОВ

Если к магнитной стрелке поднести магнит, то можно заметить, что северный полюс стрелки будет притягиваться к южному полюсу магнита и отталкиваться от его северного полюса. Южный полюс стрелки будет отталкиваться от южного полюса магнита и притягиваться к его северному полюсу.

Таким образом, разноимённые магнитные полюсы притягиваются, одноимённые отталкиваются.

МАГНИТНОЕ ПОЛЕ ПОСТОЯННЫХ МАГНИТОВ

Взаимодействие магнитов объясняется тем, что вокруг любого магнита существует магнитное поле. Выясним, как располагаются линии магнитного поля постоянных магнитов. Положим магнит на стол и накроем его стеклом. Насыпав на стекло железные опилки, мы получим картину магнитного поля постоянного магнита. Аналогично можно получить линии магнитного поля двух магнитов, обращённых друг к другу одноимёнными и разноимёнными полюсами.

Силовые линии магнитного поля постоянного магнита, как и силовые линии магнитного поля тока, являются замкнутыми линиями. Вне магнита магнитные линии выходят из северного полюса магнита и входят в южный, замыкаясь внутри магнита, так же как магнитные линии катушки с током.

Исследования последних лет подтвердили предположения учёных о существовании дрейфа континентов. По характеру намагниченности железных месторождений, возникших несколько сотен миллионов лет назад, рядом учёных была высказана гипотеза о существовании некогда в Южном полушарии единого гигантского континента, который позже раскололся на Южную Америку, Африку, Австралию и Антарктиду.

Вы смотрели Конспект по физике для 8 класса «Постоянные магниты».

Вернуться к Списку конспектов по физике (Оглавление).

Просмотров: 3 749

Природа магнетизма

Согласно одной из легенд, когда-то давным-давно жил в Греции пастух по имени Магнес. И вот шел он как-то со своим стадом овец, присел на камень и обнаружил, что конец его посоха, сделанный из железа, стал притягиваться к этому камню. С тех пор стали называть этот камень магнетит в честь Магнеса. Этот камень представляет из себя оксид железа.

Если такой камень положить на деревянную доску на воду или подвесить на нитке, то он всегда выстраивался в определенном положении. Один его конец всегда показывал на СЕВЕР, а другой  — на ЮГ.

Этим свойством камня пользовались древние цивилизации. Поэтому, это был своего рода первый компас. Потом уже стали обтачивать такой камень и делать из разные фигурки. Например, так выглядел китайский древний компас, ложка которого была сделана из того самого магнетита. Ручка у этой ложки всегда показывала на ЮГ.

Ну а далее дело шло за практичностью и маленькими габаритами. Из магнетита вытачивали маленькие стрелки, которые подвешивали на тонкую иглу посередине. Так стали появляться первые малогабаритные компасы.

Древние цивилизации, конечно, не знали еще что такое север и юг. Поэтому, одну сторону магнетита они назвали северным полюсом (North), а противоположный конец — южным (South). Названия на английском очень легко запомнить, если кто смотрел американский мультфильм «Южный парк», он же Сауз (South) парк).

1.


Подковообразный магнит из альнико — сплава железа, алюминия, никеля и кобальта и стали. Магниты изготовляются в виде подковы для того, чтобы приблизить полюса друг к другу с целью создать сильное магнитное поле, с помощью которого можно поднимать большие куски железа.

Но вот на вопрос «Что будет, если поделить магнит на части и, главное, почему?» – затруднится ответить и взрослый человек. Однако ученые уже давно нашли ответ на данный вопрос.

Что такое магнит?
Магнитом является предмет, имеющий свое магнитное поле. Они бывают трех видов: постоянные, временные и электромагниты.

Последние имеют магнитное поле и свойства магнита только в момент протекания тока по ним. Временные становятся магнитами только под воздействием сильного магнитного поля. К постоянным магнитам относятся предметы, которые сохраняют остаточную намагниченность даже после отключения от внешнего магнитного поля, а также природные минералы – магнетиты.

По легенде, этот минерал так назвали в честь греческого пастуха Магнуса. Он обнаружил, что странный черный камень притягивает его сандалии с вбитыми в них металлическими гвоздями. Хотя возможно, что магнетит назвали так из-за города, в котором он был обнаружен – Магнезия.

Мы узнаем — Магнитное поле — доклад сообщение по физике 8 9 11 класс. Подсказки школьнику

Все мы знаем, что такое магнит. Если взять 2 магнита, то можно ощутить, как они притягиваются или отталкиваются друг от друга в зависимости от расположения. На самом деле, магнитное взаимодействие это одно из 4 форм фундаментальных взаимодействий, которые руководят всеми процессами в нашей вселенной. У магнита всегда 2 полюса: северный и южный. Одноименные полюса, например северный/северный, отталкиваются друг от друга, в то время как разноименные притягиваются.

Некоторые материалы, например железо или никель, обладают магнитными свойствами. Это означает, что если данные материалы приблизить к магниту, то они сами станут магнитами. Материалы, которые обладают магнитными свойствами бывают магнитомягкими и магнитотвердыми. Магнитомягкие материалы очень легко намагничиваются и также легко теряют свои магнитные свойства, а магнитотвердые наоборот, сложно намагничиваются, но довольно долго сохраняют это свойство. Именно из магнитотвердых материалов и создаются магниты.

Магнитное поле это область пространства, в котором магнит или проводник с током будут испытывать на себе действие магнитной силы. Данному полю присущи 3 свойства:

1. Оно появляется благодаря передвигающимся зарядам электричества, т.е. образуется вокруг проводника, по которому протекает электрический ток.

2. Понять, имеется ли магнитное поле можно благодаря стрелке компаса.

3. Считается, что поле материально, потому как оно оказывает силовое воздействие.

Одним из способов проанализировать магнитное поле является рамка с током. Из проводника необходимо соорудить круглую или квадратную рамку и пустить по ней электричество, тогда находясь в области поля рамка станет поворачиваться. Еще один способ исследования-использование магнитных стрелок. Их нужно поместить в область магнитного поля и наблюдать за их движением.

Поля обозначаются линиями, не имеющими ни начальной точки, ни конечной. Данные линии называются замкнутыми. С помощью этих линий можно представить форму поля и его силовое воздействие. В точке с большой густотой линий силовое действие будет больше, нежели при малой густоте. Если густота линий одинакова и они расположены параллельно друг к другу, поле является однородным и встречается внутри катушки с большим количеством оборотов или внутри магнита. Если же линии искривлены, а густота различна, то магнитное поле считается неоднородным.

По физике 8, 9, 11 класс

Заключение

Итак, электроны – это стабильные отрицательно заряженные частицы. Они элементарные и не могут распадаться на другие элементы. Их относят к фундаментальным частицам, то есть таким, которые входят в структуру вещества.

Электроны движутся вокруг атомных ядер и составляют их электронную оболочку. Они влияют на химические, оптические, механические и магнитные свойства различных веществ. Эти частицы участвуют в электромагнитном и гравитационном взаимодействии. Их направленное движение создает электрический ток и магнитное поле.

Ну, и стоит подметить, что не даром все же модель атома, которую мы видели на примере атома кислорода, в упрощенном варианте называется планетарной. Просто сравните, как визуально похоже атомное устройство материи с Солнечной системой. И что самое интересное, внутри каждого вещества есть атомы, неизменно состоящие из протонов, нейтронов и электронов.

Поэтому заряду было придумано удобное, во многом математическое определение:

Заряд частиц
Электрон Протон Нейтрон
Отрицательный Положительный Нейтральный

Раз нейтрон по сравнению с электроном или протоном, образно говоря, нейтральный, заряда будто бы нет, такой заряд можно принять за условный $0$. Заряд электрона удобно считать отрицательным, а протона — положительным.

Важно понимать!

Это лишь условность, с помощью которой удобно описывать поведение субатомных частиц при взаимодействии. С таким же успехом заряды можно было бы назвать именами известных людей или популярными кличками собак в Голландии.

Разобраться во всем поможет… история. И щепотка здравого смысла!

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Росспектр
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: